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ABSTRACT 
 

The Revealed Preference Approach to Collective Consumption 
Behavior: Testing, Recovery and Welfare Analysis 

 
We extend the nonparametric ‘revealed preference’ methodology for analyzing collective 
consumption behavior (with consumption externalities and public consumption), to render it 
useful for empirical applications that deal with welfare-related questions. First, we provide a 
nonparametric necessary and sufficient condition for collectively rational group behavior that 
incorporates the possibility of assignable quantity information. This characterizes collective 
rationality in terms of feasible personalized prices, personalized quantities and income 
shares (representing the underlying sharing rule). Subsequently, we present nonparametric 
testing tools for data consistency with special cases of the collective model, which impose 
specific structure on the preferences of the group members (in terms of consumption 
externalities and public consumption); and we show that these testing tools in turn allow for 
nonparametrically recovering (bounds on) feasible personalized prices, personalized 
quantities and income shares that underlie observed (collectively rational) group behavior. In 
addition, we present formally similar testing and recovery tools for the general collective 
consumption model, which imposes minimal a priori structure. Interestingly, the proposed 
testing and recovery methodology can be implemented through integer programming (IP and 
MILP), which is attractive for practical applications. Finally, while we argue that assignable 
quantity information generally entails more powerful recovery results, we also demonstrate 
that precise nonparametric recovery (i.e. tight bounds) can be obtained even if no assignable 
quantity information is available. 
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1. Introduction

The �collective�consumption model explicitly recognizes that group (e.g. household) consump-
tion is the outcome of multi-person decision making, with each individual decision maker (e.g.
household member) characterized by her or his own rational preferences. Following Chiap-
pori (1988, 1992), it regards �rational�group consumption as the Pareto e¢ cient outcome of
a within-group bargaining process. This collective approach contrasts with the conventional
�unitary�approach, which models groups as if they were single decision makers. The fact that
the collective approach starts from individual preferences (and not �group preferences�) makes it
particularly useful for addressing welfare-related questions that speci�cally focus on the within-
group distribution of the group income.
For example, the �targeting view�of Blundell, Chiappori andMeghir (2005) takes as a starting

point that the e¤ectiveness of a speci�c bene�t or tax also depends on the particular group (e.g.
household) member to whom it has been targeted; and these authors argue that a unitary set-
up, which implicitly assumes income pooling at the aggregate group level, fails to adequately
deal with such targeting considerations. In addition, the collective model allows for analyzing
welfare at the individual group member level rather than at the aggregate group level; for
example, Browning, Chiappori and Lewbel (2006) suggest a collective approach for comparing
the cost-of-living of individuals living alone with that of the same individuals living in a multi-
member household. Finally, a concept that is intrinsically related to the collective approach
is the so-called �sharing rule�, which divides the aggregate group means over the individual
group members. Recovering this sharing rule, and subsequently explaining its variation in
terms of group (member) characteristics, can yield useful insights into the distribution of the
within-group bargaining power across the individual group members; see, for example, Browning,
Bourguignon, Chiappori and Lechene (1994), Browning and Chiappori (1998) and Chiappori and
Ekeland (2006).
Cherchye, De Rock and Vermeulen (2007) recently established a nonparametric �revealed

preference� characterization of a collective consumption model that considers general prefer-
ences of the individual group members, which allow for consumption externalities and public
consumption within the group.1 They introduced a testable necessary condition and a testable
su¢ cient condition for data consistency with the collective consumption model that only require
price and quantity data pertaining to the aggregate group level; these conditions have a simi-
lar formal structure as the generalized axiom of revealed preference (GARP) condition for the
unitary model (Varian, 1982, building on Afriat, 1967). These nonparametric conditions allow
for testing consistency of observed group behavior with collective rationality. By contrast, the
empirical analysis of the welfare-related questions listed above requires recovery of the decision
structure underlying the observed (aggregate) group behavior.
This paper focuses on the nonparametric analysis of recovery questions that are relevant for

the collective model. More speci�cally, we explore whether the structural collective consump-

1Browning and Chiappori (1998) originally suggested this collective consumption model, and established
its parametric characterization; see also Chiappori and Ekeland (2006) for additional discussion. Browning,
Chiappori and Lewbel (2006) recently proposed a collective consumption model that explicitly accounts for
economies of scale within the process of household consumption. Our model (implicitly) includes such economies
of scale that follow from public consumption and consumption externalities.
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tion model (i.e. individual preferences, individual consumption and the sharing rule) can be
recovered on the basis of observed group behavior alone (i.e. aggregate quantities and prices).
The recovery methodology that we present consequently enables the nonparametric analysis of
welfare-analytical questions that are speci�c to the collective consumption model. Nonpara-
metric recovery typically aims at identifying the set of structural models that are consistent
with a given set of observations. The corresponding recovery questions are essentially the non-
parametric counterparts of the so-called �identi�cation�questions in the parametric literature;
see Chiappori and Ekeland (2005) for a general discussion on parametric identi�cation for the
collective model. To illustrate the di¤erence between parametric and nonparametric recov-
ery/identi�cation, let us consider the unitary model. For that model, parametric identi�cation
aims at recovering the (structural model) parameters of a pre-speci�ed utility function repre-
senting unique preferences from a set of demand (reduced form) parameters that are estimated.
By contrast, from a nonparametric perspective, there usually are many preferences that are
consistent with the same set of data satisfying the unitary GARP condition. Therefore, non-
parametric recovery of the unitary model focuses on identifying the set of preferences that are
consistent with a given data set; see, for example, Afriat (1967) and Varian (1982 and 2006).
The main purpose of the current paper is to develop similar �set identi�cation�results for the
collective model. In fact, given that this collective model includes the unitary model as a special
case (i.e. when there is a single group member/decision maker), we also complement the existing
literature on nonparametric recovery within the context of the unitary model.
In what follows, we will make the distinction between �special cases�and �the general case�

of the collective model. The �special cases� impose speci�c a priori structure on the group
behavior: (1) the case in which all goods are publicly consumed, and (2) the case in which all
goods are privately consumed and there are no consumption externalities. For these cases, we
establish conditions that can be tested on the basis of the available (aggregate) price and quantity
data and that are simultaneously necessary and su¢ cient for data consistency with collective
rationality. In turn, these necessary and su¢ cient conditions allow for �full� nonparametric
recovery of the collective model. Interestingly, these results comply with those of Chiappori and
Ekeland (2005), who consider similar special cases to obtain identi�cation (or more precisely
�identi�ability�) within a parametric context. As we will discuss, our treatment of these special
cases allows for a number of useful extensions, such as: nonparametric testing and recovery for
the �hybrid�case in which some goods are publicly consumed while all other goods are privately
consumed without externalities; forecasting collective consumption behavior in new situations;
and testing speci�c hypotheses regarding the collective decision process. Next, �the general case�
does not impose a priori structure and thus allows for public consumption and externalities of
any good. For this case, we develop a necessary condition for collective rationality that can be
tested on the available data. And we subsequently argue that this necessary condition provides a
useful basis for nonparametric recovery of the sharing rule underlying observed group behavior.
The rest of the paper unfolds as follows. Section 2 recaptures the nonparametric condition

for collective rationality. We extend the discussion of Cherchye, De Rock and Vermeulen (2007)
by including the possible use of �assignable quantity� information (which is often partly, but
not fully, available in budget surveys). This characterizes collectively rational group behavior in
terms of �feasible personalized prices, personalized quantities and income shares�(representing
the underlying sharing rule). Section 3 considers the �special cases�mentioned above. For these
cases, we develop (necessary and su¢ cient) tests for data consistency with collectively rational

3



behavior that merely involve mixed integer linear programming (MILP), which is attractive for
practical applications. Subsequently, we address the recovery issue and discuss the possibility
to identify (through MILP) the sets, and corresponding upper and lower bounds, of feasible
personalized prices, personalized quantities and income shares that are consistent with collec-
tively rational group behavior; these results parallel the results on nonparametric preference
recovery for the unitary model. Additional assignable quantity information generally entails
tighter bounds; but, as we will show, precise recovery (i.e. tight bounds) can be obtained even
if no assignable quantity information is available. Section 4 addresses the testing issue for �the
general case�; we introduce a (necessary) test for data consistency with collectively rational
consumption behavior which can be implemented through integer programming (IP). Section 5
considers the corresponding recovery issue, and demonstrates the possibility to identify (through
MILP) bounds on the feasible income shares without imposing speci�c a priori structure on the
collective model. Still, recovery of feasible personalized quantities and prices remains impossible
for the general case, which again falls in line with the results of Chiappori and Ekeland (2005) on
parametric identi�cation. Section 6 summarizes and o¤ers some concluding remarks regarding
the practical application of the proposed methodology. The appendix contains the proofs of our
main results.

2. Rational collective consumption behavior

This section introduces the nonparametric characterization of the collective model that con-
siders general preferences of the group members, which impose minimal a priori structure on
the consumption externalities and public consumption within the group. Starting from this
nonparametric characterization, Section 3 addresses testing and recovery of special cases of this
general model, which include additional structure on the nature of the members�preferences.
Sections 4 and 5 subsequently return to (testing and recovery of) the general model that is
presented here.

2.1. Individual preferences

We consider an M -member group. The group purchases the (non-zero) n-vector of quantities
q 2 Rn+ with corresponding prices p 2 Rn++. All goods can be consumed privately, publicly or
both. For example, car use may be partly public (e.g. car use for a family trip) and partly
private (e.g. car use for work). In addition, as for the privately consumed quantities, we allow
for externalities (which includes the possibility of �altruism�). Summarizing, this obtains

q =

MX
m=1

qm +

 
MX
m=1

Qm +Qh

!

with qm 2 Rn+ the private consumption quantities of memberm without externalities (i.e. that do
not enter the utility function of at least one other member), Qm 2 Rn+ the private consumption
quantities of member m with externalities (i.e. that do enter other members�utility functions),
and Qh 2 Rn+ the publicly consumed quantities.
Note that not only the quantitiesQh but also the quantitiesQm may be interpreted as �public

consumption�, given that they enter other members�utility functions. To simplify notation, we
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therefore use Q =
�
Q1; :::;QM ;Qh

�
2
�
Rn+
�M+1

in the following. No qualitative distinction can
be made between the di¤erent components of Q. Yet, there is a clear quantitative di¤erence:
group members may accord another marginal valuation to private consumption Qm than to
public consumption Qh. Our use of the simpli�ed notation Q rather than

�
Q1; :::;QM ;Qh

�
also falls in line with the argument of Chiappori and Ekeland (2006), who state that privateness
(versus publicness) of consumption has no testable implication per se if no additional information
(on �assignable quantities�; see below) is used.
Formally, we assume that preferences of each memberm can be represented by a non-satiated

utility function Um (qm;Q) that is non-decreasing in its arguments. Given the construction of
Q, this e¤ectively accounts for public consumption within the group and (positive) consumption
externalities.

2.2. Assignable quantities

We start from T observations of group consumption quantities under di¤erent price regimes. For
each observation t we use pt and qt to denote the observed prices and aggregate quantities. In
general, for each qt we do not observe its constituent components qmt and Qt. If we observe how
much a group member consumes of a particular good, then we say this good is �assignable�; see
Bourguignon, Browning and Chiappori (2006). In this paper, we consider assignable quantities
that speci�cally relate to private quantities without externalities (qmt ); these quantities can be
assigned to a single member�s utility function, which is no longer the case if externalities are
possible. Of course, in practice such assignable quantities necessarily involve an assumption
that preference externalities are e¤ectively absent. Note further that it may well be that we
have such assignable quantity information for only a subset of group members rather than for
all members. Chiappori and Ekeland (2005), considering general collective consumption models,
which also includes private consumption, argue that such assignable quantity information (on
qmt ) is necessary for obtaining �identi�ability�. More speci�cally, they show that it is necessary
for parametrically recovering the underlying structure of the consumption model (i.e. member
preferences and decision process) from the group�s aggregate consumption behavior alone. In
the following, we will argue that the use of assignable quantity information can (often consid-
erably) enhance the power of the nonparametric analysis. Still, we will also demonstrate that
precise nonparametric recovery is sometimes possible even if no assignable quantity information
is available.
For each observation t, we de�ne the (observed) assignable quantities qAmt 2 Rn+ for member

m as lower bounds for the (unobserved) quantities qmt , i.e.

qmt � qAmt :

Our following discussion focuses on a set of observations SA = f(pt; qt; qA1t ; :::; qAMt ); t =
1; :::; Tg. The superscript A in SA refers to the fact that this set includes assignable quantities.
We note that, in our general case, for some goods it may well be that only parts of the consumed
quantities are assignable (e.g., car use for work can be assignable while car use for a family trip
is clearly not).
Let us consider some speci�c examples. For simplicity, we focus on two-member households

(M = 2) consisting of a wife (member 1) and a husband (member 2):

5



1. A �rst example implies that all goods are fully assignable, which means qt = qA1t + qA2t
and thus qmt = qAmt . For example, Bonke and Browning (2006) discuss a data set on
household consumption that could be used in this case. Importantly, given our speci�c
assumption of assignable quantities (which -to recall- pertains to private consumption
without externalities), such a full assignability assumption excludes public consumption
and consumption externalities (because Qt = (0; :::;0;0)); i.e. group members are of the
so-called �egoistic�type.

A speci�c application of this example setting includes an observation t of member m�s
consumption behavior when deciding alone (rather than in group): e.g., for the wife as
member 1, this corresponds to qA1t = qt if the full consumption quantity can be assigned
to the wife in situation t. Note that such an application implies that we assume that
individual egoistic preferences do not change when deciding in group (e.g. when living in
a multi-member household) or when deciding alone (e.g. when living apart); for instance,
one may assume constant preferences for the wife (husband) in a couple and the same
wife (husband) as a widow(er) (compare with Michaud and Vermeulen, 2006). In fact,
the testing tools presented below e¤ectively allow for testing such a constant preference
assumption.

2. Our general set-up also includes intermediate scenarios with qAmt 6= qmt and qAmt 6= 0.
Generally, this intermediate case includes settings characterized by assignable goods as
well as non-assignable goods, which can be characterized by externalities as well as public
consumption. For instance, a model that is often considered in the literature excludes,
like before, public consumption and consumption externalities (Qt = (0; :::;0;0)) while,
di¤erent from before, it only uses quantity information on a so-called �exclusive good�
for each household member (i.e. an assignable good that is exclusively consumed by
the wife or the husband; see Bourguignon, Browning and Chiappori, 2006). A speci�c
application is Chiappori�s (1988) labor supply model with egoistic household members;
in that setting, each household member�s leisure is the exclusive good while the other,
Hicksian consumption good is non-assignable.

3. A �nal example implies no assignable quantity information, i.e. qAmt = 0. In that case,
there are no restrictions on qmt and Qt apart from non-negativity and adding-up (qt =PM

m=1 q
m
t +

�PM
m=1Q

m
t +Q

h
t

�
). This includes the setting in which all goods, even if

assignable, can be characterized by externalities. Cherchye, De Rock and Vermeulen (2007)
established nonparametric empirical restrictions for collectively rational group behavior in
this scenario, which imposes minimal a priori restrictions.

2.3. Collective rationality

To de�ne the collective rationality condition, we focus on feasible decompositions of the aggregate
quantities qt in terms of qmt , the private quantities that only enter member m�s utility function,
andQt, the private and public quantities that enter other members�utility functions: Speci�cally,
we de�ne feasible personalized quantities bqt, which capture such feasible decompositions of qt.
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De�nition 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. For each
observation t, feasible personalized quantities bqt = �

q1t ; :::; q
M
t ;Qt

�
satisfy qmt � qAmt , m =

1; :::;M , and Qt =
�
Q1
t ; :::;Q

M
t ;Q

h
t

�
2
�
Rn+
�M+1

such that qt =
PM

m=1 q
m
t +

�PM
m=1Q

m
t +Q

h
t

�
:

Example 1 illustrates the concept.

Example 1. Consider a two-member household (M = 2) with a wife (member 1) and a husband
(member 2) that consumes three goods (n = 3). Suppose two observations with aggregate
quantities

q1 = (3; 5; 4)
0 and q2 = (4; 3; 5)

0 ;

and assignable quantities

qA11 = (0; 0; 1)0 and qA21 = (0; 2; 0)0 ;

qA12 = (1; 0; 0)0 and qA22 = (0; 0; 2)0 :

One possible speci�cation of the feasible personalized quantities bq1 and bq2 is then
q11 = (2; 0; 1)0 ; q21 = (1; 2; 0)

0 ;Q1
1 = (0; 0; 0)

0 ;Q2
1 = (0; 0; 3)

0 ;Qh
1 = (0; 3; 0)

0 ;

q12 = (1; 2; 0)0 ; q22 = (0; 1; 2)
0 ;Q1

2 = (3; 0; 0)
0 ;Q2

2 = (0; 0; 0)
0 ;Qh

2 = (0; 0; 3)
0 :

Using the concept of feasible personalized quantities, we can de�ne the condition for a collec-
tive rationalization of a set of observations SA, which basically requires that the observed group
consumption can be represented as a Pareto e¢ cient outcome of some within-group bargaining
process.

De�nition 2. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. A combi-
nation of M utility functions U1; :::; UM provides a collective rationalization of SA if for each
observation t there exist feasible personalized quantities bqt = �q1t ; :::; qMt ;Qt

�
and �mt 2 R++;

m = 1; :::;M; such that

MX
m=1

�mt U
m (qmt ;Qt) �

MX
m=1

�mt U
m
�
zm;Z1; :::;ZM ;Zh

�
for all zm;Z1; :::;ZM ;Zh 2 Rn+ with p0t[

PM
m=1 z

m+ (
PM

m=1 Z
m+ Zh)] � p0tqt and zm � qAmt :

Thus, a collective rationalization of SA requires that there exists, for each observation t with
assignable quantities qAmt , feasible personalized quantities bqt that maximize a weighted sum of
the group members�utilities Um for the given group budget p0tqt: This optimality condition
re�ects the Pareto e¢ ciency assumption regarding observed group consumption in the collective
model. Each weight �mt represents the �bargaining power�of member m in observation t: See
also Browning and Chiappori (1998) for a detailed discussion.
Clearly, assignable quantity information restricts the feasible set of utility functions Um and

bargaining weights �mt in De�nition 2. And thus, intuitively, additional assignable quantity
information will yield more stringent nonparametric conditions for collective rationality. In
turn, these stronger conditions will entail �more powerful�nonparametric recovery results. We
will repeatedly illustrate this in the sequel.
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2.4. Nonparametric condition

We next establish a nonparametric condition for a collective rationalization of a set SA. To
do so, we �rst de�ne feasible personalized prices

�bp1t ; :::; bpMt � for observed aggregate prices pt,
which complement the concept of feasible personalized quantities in De�nition 1. We use bpmt =�
pm;1t ; :::; pm;Mt ;Pm

t

�
; and the interpretation of the di¤erent components is as follows. As for

the �rst M components, the personalized prices equal the observed prices for member m�s own
private consumption quantities without externalities (i.e. pm;mt = pt for the quantities qmt ), while
they equal zero for the other members�private consumption quantities without externalities (i.e.

pm;lt = 0 for the quantities qlt; l 6= m). The remaining component Pm
t =

�
Pm;1
t ; :::;Pm;M

t ;Pm;h
t

�
captures the fraction of the price for the quantities Qt that is borne by member m: for each
separate component of Qt the corresponding personalized prices can be interpreted as Lindahl
prices and must add up to the observed prices. More speci�cally, feasible personalized prices
Pm;l
t , l = 1; :::; M , pertain to private quantities with externalities and feasible personalized

prices Pm;h
t to public quantities. Summarizing, we get the following formal de�nition.

De�nition 3. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. For each
observation t, feasible personalized prices

�bp1t ; :::; bpMt � with bpmt =
�
pm;1t ; :::; pm;Mt ;Pm

t

�
, m =

1; :::;M , satisfy pm;mt = pt, p
m;l
t = 0 for l 6= m and Pm

t =
�
Pm;1
t ; :::;Pm;M

t ;Pm;h
t

�
2
�
Rn+
�M+1

such that pt =
PM

m=1P
m;c
t for c = 1; :::;M; h:

Example 2 illustrates the concept.

Example 2. We recapture the situation of Example 1. Suppose the corresponding observed
prices

p1 = (1; 3; 2)
0 and p2 = (2; 1; 3)

0 :

One possible speci�cation of the feasible personalized prices (bp1t ; bp2t ) is then
p1;11 = (1; 3; 2)0 ; p1;21 = (0; 0; 0)0 ;P1;1

1 = (0; 3; 2)0 ;P1;2
1 = (0; 0; 2)0 ;P1;h

1 = (1=3; 1; 2=3)0 ;

p2;11 = (0; 0; 0)0 ; p2;21 = (1; 3; 2)0 ;P2;1
1 = (1; 0; 0)0 ;P2;2

1 = (1; 3; 0)0 ;P2;h
1 = (2=3; 2; 4=3)0 ;

p1;12 = (2; 1; 3)0 ; p1;22 = (0; 0; 0)0 ;P1;1
2 = (1; 1; 3)0 ;P1;2

2 = (0; 0; 1)0 ;P1;h
2 = (2=3; 1=3; 1)0 ;

p2;12 = (0; 0; 0)0 ; p2;22 = (2; 1; 3)0 ;P2;1
2 = (1; 0; 0)0 ;P2;2

2 = (2; 1; 2)0 ;P2;h
2 = (4=3; 2=3; 2)0 :

Based on De�nitions 1 and 3, we de�ne a set of feasible personalized prices and quantities

bSA = f�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg; (2.1)

note that a given set of observations SA generally enables multiple speci�cations of bSA.
Using the notation bSA we can specify the generalized axiom of revealed preference (GARP),

which we translate towards our speci�c setting. Varian (1982) introduced the GARP condition
for individually rational behavior under observed prices and quantities; i.e. he showed that
it is a necessary and su¢ cient nonparametric condition for maximizing a single non-satiated
utility function under a given budget constraint. We focus on the same condition in terms of
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feasible personalized prices and quantities; we will establish that collective rationality as de�ned
in De�nition 2 requires GARP consistency for each individual member m.2

De�nition 4. Let bSA = f�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg be a set of feasible personalized prices
and quantities. If (bpms )0 bqs � (bpms )0 bqt then bqs Rm0 bqt (�bqs is directly revealed preferred to bqt
by member m�); and if bqs Rm0 bqu; bqu Rm0 bqv; :::; bqz Rm0 bqt for some (possibly empty) sequence
(u; v; :::; z) then bqs Rm bqt (�bqs is revealed preferred to bqt by member m�). The set f(bpmt ; bqt) ;
t = 1; :::; Tg satis�es GARP if (bpmt )0 bqt � (bpmt )0 bqs whenever bqs Rm bqt.
Remark that, if the group consists of only a single member (M = 1), then bSA = f(pt;qt) ;

t = 1; :::; Tg and De�nition 4 coincides with the usual GARP condition for individually rational
behavior. In fact, thatGARP condition for individually rational behavior can also be interpreted
as the nonparametric condition for the unitary household consumption model, which -to recall-
treats the household as if it were a single decision maker. This fact that the unitary model can
be conceived as a special case of the general collective model (i.e. for M = 1) also appears from
the next proposition, which provides a nonparametric characterization of collectively rational
behavior.

Proposition 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of M concave and continuous utility functions U1; :::; UM that
provide a collective rationalization of SA;

(ii) there exists a set of feasible personalized prices and quantities bSA such that for each member
m = 1; :::; M the set f(bpmt ; bqt) ; t = 1; :::; Tg satis�es GARP;
(iii) there exists a set of feasible personalized prices and quantities bSA, numbers Umj > 0 and
�mj > 0 such that for all s; t 2 f1; :::; Tg : Ums � Umt � �mt (bpmt )0 (bqs � bqt) for each member
m = 1; :::; M .

Condition (ii) states that collective rationality requires individual rationality (i.e. GARP
consistency) of each member m in terms of personalized prices and quantities; condition (iii)
gives the equivalent �Afriat inequalities�(see Varian, 1982, for extensive discussion in the context
of the unitary model). In general, however, the true personalized prices and quantities are
unobserved. Therefore, it is only imposed that there must exist at least one set of feasible
personalized prices and quantities bSA that satis�es the condition. In what follows, we will
mainly focus on condition (ii).
Example 3 illustrates the result. This example shows consistency with the condition in Propo-

sition 1 for a data set with two observations. In Section 4 (Example 8), we will give an example
with two observations that rejects collective rationality in terms of the condition in Proposition
1 for M = 2; this shows that two observations are su¢ cient for rejecting collective rationality
in terms of the condition in Proposition 1. The possibility to reject collective rationality with
two observations essentially depends on the available assignable quantity information. Indeed,

2Slightly abusing notation, but for ease of exposition, we use (bpms )0 bqt = PM
l=1

�
pm;ls

�0
qlt+

PM
l=1

�
Pm;ls

�0
Qlt+�

Pm;hs

�0
Qht .

9



Cherchye, De Rock and Vermeulen (2007) show that, if no assignable quantity information is
used (qAmt = 0 for each observation t and each member m), then rejecting collective rationality
requires at least three observations (for M = 2).

Example 3. We recapture the situation of Examples 1 and 2, with corresponding observed
prices and aggregate quantities. We can verify that this data set satis�es the condition in
Proposition 1. For example, consider the set of feasible personalized prices and quantities bSA
with bq1 and bq2 speci�ed in Example 1 and (bp1t ; bp2t ) speci�ed in Example 2. For these feasible
quantities and prices we have that (bp11)0bq1(= 13) > (bp11)0bq2(= 9) and (bp12)0bq2(= 10) < (bp12)0bq1(=
11); so from De�nition 4 it is easily veri�ed that the �rst member satis�es GARP. Analogously,
we �nd that also the second member satis�es GARP: (bp21)0bq1(= 13) < (bp21)0bq2(= 14) and
(bp22)0bq2(= 16) > (bp22)0bq1(= 12). Since both members satisfy GARP for the given bSA, we
conclude that the condition in Proposition 1 holds, and thus that there exist utility functions
that provide a collective rationalization of this data set.

2.5. The sharing rule

Importantly in view of our further discussion, the result in Proposition 1 also allows for the
following decentralized interpretation of collective rationality: collective rationality at the group
level (for given SA) requires individual rationality at the member level (for some bSA). Given
this, collectively rational consumption behavior can also be represented as the outcome of a
two-step allocation procedure: in the �rst step, the so-called sharing rule distributes the ag-
gregate group income across the group members; in the second step, each member optimizes
her/his utility subject to the resulting income share and accounting for the member�s personal-
ized prices. We remark that this decentralized representation of collectively rational behavior,
which follows from the Pareto e¢ ciency assumption regarding the group bargaining process, is
formally similar to the well-known decentralization result regarding collective rationality when
consumption externalities and public consumption are excluded; see Chiappori (1988, 1992). An
important di¤erence of the approach followed in this paper is that each member m�s preferences
may depend not only on her or his own private consumption, but also on the other members�
private consumption as well as public consumption (implying that personalized prices can di¤er
from observed �market�prices).
In the �rst step, the sharing rule de�nes the income shares that are allocated to the di¤erent

group members. Correspondingly, for a set of feasible personalized prices and quantities bSA
that obtains consistency with the collective rationality condition in Proposition 1, we can de�ne
feasible income shares bymt for each member m, which by construction must sum up to the total
group budget (

PM
m=1 bymt = yt).

De�nition 5. Let bSA = f�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg be a set of feasible personalized prices
and quantities such that each set f(bpmt ; bqt) ; t = 1; :::; Tg, m = 1; :::; M; satis�es GARP. For
yt = p

0
tqt the group income at observation t, this set bSA de�nes a feasible income share for each

member m at prices pt as bymt = (bpmt )0 bqt:
Example 4 illustrates the de�nition.
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Example 4. We again consider the data set given in Examples 1 and 2. For the set of feasible
personalized prices and quantities bSA with bq1 and bq2 speci�ed in Example 1 and (bp1t ; bp2t ) speci�ed
in Example 2, we obtain by11 = (bp11)0bq1 = 13, by21 = (bp21)0bq1 = 13 and by12 = (bp12)0bq2 = 10,by22 = (bp22)0bq2 = 16. Observe that by11+ by21 = y1 = 26 and by12+ by22 = y2 = 26:
The second step of the allocation procedure then requires that the quantities bqt maximize

each member m�s utility under the budget bymt (which, in our set-up, is endogenously de�ned as
(bpmt )0 bqt for �bp1t ; :::; bpMt ; bqt� in bSA). This corresponds to a separate GARP condition for each
set f(bpmt ; bqt) ; t = 1; :::; Tg.
The sharing rule is a core concept in this two-step representation. It can be interpreted

as an indicator for the bargaining power of the individual group members: a higher relative
income share of member m (bymt =yt) is then regarded as an indication of increased bargaining
power for that member; see Browning, Chiappori and Lewbel (2006). The sharing rule concept
is particularly useful in a welfare context, because it is independent of cardinal representations
of preferences (in contrast to the bargaining weights �mt in De�nition 2). Given this useful
interpretation, a main question in what follows concerns the nonparametric recovery of feasible
income shares. We will de�ne bounds for the feasible income shares that are independent of
the speci�cation of the (data rationalizing) set bSA. Intuitively, additional assignable quantity
information will generally entail more powerful recovery results. But we will also show that
stringent bounds can be obtained even if no assignable quantity information is available.

3. Special cases: testing and recovery

So far, we have considered a collective consumption model that accounts for general utility
functions Um and thus allows for public consumption and externalities of any good. For this
case, the necessary and su¢ cient condition for a collective rationalization in Proposition 1 is
di¢ cult to use in practice. More speci�cally, the member-speci�c revealed preference relations
Rm0 and Rm in De�nition 4 are not directly useful since they are nonlinear in the feasible
personalized prices

�bp1t ; :::; bpMt � and quantities bqt. Given this, we �rst consider special cases of
the general collective consumption model presented in Section 2; they put additional a priori
structure on member-speci�c utility functions Um, which essentially pertains to the nature of
the goods in terms of externalities and private/public consumption. In terms of the condition
in Proposition 1, for each good they �x either the feasible personalized prices or the feasible
personalized quantities.
We will provide testable necessary and su¢ cient conditions for collective rationality for these

special cases. Starting from these conditions, we can recover the sharing rule, personalized prices
and personalized quantities that underlie the observed collective choice behavior. In addition, we
can recover, or �forecast�, behavior in new situations. As we will discuss, such testing, recovery
and forecasting is possible through mixed integer linear programming (MILP), with binary (or
0-1) variables as the endogenously de�ned integer variables.3 As such, practical applications can
use e¢ cient solution methods that have been used for formally similar MILP problems; see, for

3Closely similar integer programming characterizations have been suggested in the context of Arrovian social
welfare functions. See, for example, Sethuraman, Piaw and Vohra (2003).
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example, Nemhauser and Wolsey (1999) for a general discussion. Conveniently, e¢ cient MILP
solvers have been included in many present-day optimization software packages.
To be precise, nonparametric recovery essentially de�nes upper and lower bounds on the

feasible income shares, personalized prices and personalized quantities that hold for all sets bSA
providing a collective rationalization of the data; if a speci�c feasible income share, personalized
price or personalized quantity respects these bounds, then there exists a corresponding setbSA that collectively rationalizes the observed set SA. We illustrate the practical usefulness of
the proposed methodology by simple numerical examples. These examples show that precise
recovery results (i.e. tight bounds) can be obtained even if there are few observations and no
assignable quantity information is available. In practice, of course, we may generally expect
more precise recovery when more observations or assignable quantity information can be used.

3.1. Public consumption

In this section, we assume that all private consumption quantities qm (without externalities)
and Qm (with externalities) are zero, which implies q = Qh. In terms of the general condition
for collective rationality in De�nition 2, this means that we consider member-speci�c utility
functions Um (qm;Q) = V m

�
Qh
�
= V m (q). It is worth emphasizing that this setting is more

general than may seem at �rst sight. Stricto sensu, the mere implication is that the (observed)
aggregate quantities (fully) enter all utility functions; in principle, this allows for private con-
sumption (with externalities) of a particular good e by member m as long as that good e is
exclusively consumed by that member m. Formally, when using (z)e as the e-th entry of a vector
z, (Qm)e = (q)e (and thus

�
Qh
�
e
= 0) is empirically equivalent to

�
Qh
�
e
= (q)e (and thus

(Qm)e = 0). This directly relates to our earlier remark that a quantitative but no qualitative
distinction can be made between the di¤erent components of Q. Further, if externalities are not

excluded and all goods are fully assignable (i.e. q =
XM

m=1
Qm and we observe all quantities

Qm), then an analogous argument obtains that the following method can also be used.
Because we assume that qt= Qh

t for each observation t, we must focus on sets of feasible
personalized prices and quantities bSA with Qh

t= qt. As a result, the only relevant component
of the feasible personalized prices bpmt is the vector Pm;h

t , which pertains to the publicly con-
sumed quantities. Given this, the nonparametric necessary and su¢ cient condition for collective
rationality follows directly from Proposition 1.

Corollary 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. For
Um (qm;Q) = V m

�
Qh
�
; m = 1; :::; M; there exists a combination of M concave and con-

tinuous utility functions U1; :::; UM that provide a collective rationalization of SA if and only
if there exist feasible personalized prices

�bp1t ; :::; bpMt � such that for each member m the set

f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP:

Interestingly, this condition can be reformulated as requiring that the feasible set of a speci�c
MILP problem is non-empty. To see this, we de�ne the binary variables xmst 2 f0; 1g, with xmst = 1
interpreted as �bqs Rm bqt�for a given set of feasible personalized prices and quantities bSA. We
then have the following result.
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Proposition 2. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. There
exist feasible personalized prices

�bp1t ; :::; bpMt � such that for each member m = 1; :::; M the set

f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP if and only if there exist non-negative Pm;h

t , bymt and
xmst 2 f0; 1g that satisfy

(PP-i) pt=
XM

m=1
Pm;h
t ,

(PP-ii) bymt = �Pm;h
t

�0
qt,

(PP-iii) byms � �Pm;h
s

�0
qt < ysx

m
st ,

(PP-iv) xmsu + x
m
ut � 1 + xmst ; and

(PP-v) bymt � �Pm;h
t

�0
qs � yt (1� xmst).

The interpretation of the di¤erent �personalized price�(PP) constraints is the following. Rule
(PP-i) follows from De�nition 3 of feasible personalized prices and rule (PP-ii) from De�nition
5 of feasible income shares. Rule (PP-iii) implies that, if byms � �Pm;h

s

�0
qt, then we must have

xmst = 1 (which corresponds to bqs Rm bqt).4 Rule (PP-iv) imposes transitivity, i.e. xmsu = 1 (bqs
Rm bqu) and xmut = 1 (bqu Rm bqt) imply xmst = 1 (bqs Rm bqt). Finally, rule (PP-v) requires that,
if xmst = 1 (bqsRmbqt), then bymt �

�
Pm;h
t

�0
qs. As such, Proposition 2 de�nes an operational

necessary and su¢ cient test for collective rationality (under the assumption Um (qm;Q) =
V m

�
Qh
�
): if the MILP constraints (PP-i)-(PP-v) characterize an empty feasible region for the

given data set, then a collective rationalization (with only public consumption) of the data is
impossible; conversely, if the MILP constraints characterize a non-empty feasible region, then a
collective rationalization of the data is certainly possible.
Given this characterization of collective rationality, we can recover upper and lower bounds

on feasible income shares and feasible personalized prices that provide a collective rationalization
of the set S. To de�ne the upper (or, conversely, lower) bound for the feasible income share of
memberm, we solve the MILP problem that optimizes the objective max bymt (or min bymt ) subject
to (PP-i)-(PP-v). Similarly, to de�ne the upper (or lower) bound on the feasible personalized
price of an individual good e (1 � e � n), we solve the MILP problem that optimizes the

objective max
�
Pm;h
t

�
e
(or min

�
Pm;h
t

�
e
) subject to (PP-i)-(PP-v).

Example 5 illustrates the MILP test. It demonstrates that the proposed method can obtain
very tight bounds even when the number of observations is small (in casu T = 3); these tight
bounds can be recovered because there is a large variation in the observed prices and aggregate
quantities. In the general case, for a given price-quantity variation, we can -of course- expect
the bounds to become tighter when more information can be used (e.g. because T gets larger).
Such additional information can also include speci�c hypotheses about the decision structure
underlying observed group behavior (in casu the sharing rule or feasible personalized prices).
In fact, as also shown in Example 5, our approach allows for testing such assumptions.

4The strict inequality byms �
�
Pm;hs

�0
qt < ysx

m
st is di¢ cult to use in MILP. Therefore, in practice we can

replace it with byms � �Pm;hs

�0
qt + � � ysxmst for � (> 0) arbitrarily small. A similar quali�cation applies to the

constraint (PQ-iv) in Proposition 3.
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Example 5. Consider a two-member household (M = 2) that consumes three goods (n = 3).
Suppose three observations with aggregate quantities and prices (for 0 < � < 1)5

q1 = (1; 0; 0)0 ;p1 = (1 + �; 1; �=2)
0 ;

q2 = (0; 1; 0)0 ;p2 = (1; 1 + �; �=2)
0 ;

q3 = (0; 0; 1)0 ;p3 = (0:5 + �=2; 0:5 + �=2; 1)
0 :

As a preliminary step, we note that these prices and quantities imply

y1 = 1 + �; p01q2 = 1; p
0
1q3 = �=2;

y2 = 1 + �; p02q1 = 1; p
0
2q3 = �=2;

y3 = 1; p03q1 = 0:5 + �=2; p
0
3q2 = 0:5 + �=2:

Step 1. We �rst consider the restrictions on the binary variables x1st and x
2
st (s; t 2 f1; 2; 3g,

s 6= t) for the current data. As a �rst result, we must have x1st = 1 or x2st = 1 for any s and t.
Speci�cally, rule (PP-iii) implies

by1s � �P1;h
s

�0
qt < ysx

1
st and by2s � �P2;h

s

�0
qt < ysx

2
st:

Combining these two constraints, and using that ps=P1;h
s +P2;h

s (PP-i) and ys = by1s+by2s (PP-iii),
yields

ys � p0sqt < 2ys
�
x1st + x

2
st

�
;

and thus, because ys > p0sqt, we necessarily have x
1
st = 1 or x

2
st = 1 for any s and t.

As a second result, we obtain that xmst = 1 implies x
l
ts = 1 (m; l 2 f1; 2g; m 6= l) for any s

and t. Speci�cally, for xmst = 1 rule (PP-v) entails

bymt � �Pm;h
t

�0
qs � 0 (= yt (1� xmst)):

Using pt=P
1;h
t +P2;h

t , yt = by1t + by2t and yt > p0tqs, this obtains
bylt > �Pl;h

t

�0
qs, and thus xlts = 1 because of rule (PP-iii).

As a third result, we cannot have x1st = 1 and x
2
st = 1 for any s and t. If x

1
st = 1 and x

2
st = 1,

then rule (PP-v) requires

by1t � �P1;h
t

�0
qs � 0 and by2t � �P2;h

t

�0
qs � 0:

In turn, using pt=P
1;h
t +P2;h

t , yt = by1t + by2t , this yields
yt � p0tqs � 0;

5To emphasize, we use zero quantities for mathematical elegance. Of course, this use of zero quantities does
not a¤ect the core of our arguments in this and following examples.
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which is excluded because yt > p0tqs.
As a fourth result, we cannot have (i) xm21 = 1 and xl31 = 1 or (ii) xm12 = 1 and xl32 = 1

(m 6= l): For example, consider xm21 = 1 and xl31 = 1. (The argument for xm12 = 1 and xl32 = 1 is
directly analogous.) In that case, rule (PP-v) requires

y1 �
�
Pm;h
1

�0
q2 �

�
Pl;h
1

�0
q3 � 0 (= y1

�
2� xm21 � xl31

�
);

which is excluded because y1 > p01 (q2 + q3) and, by construction, p
0
1 (q2 + q3) �

�
Pm;h
1

�0
q2 +�

Pl;h
1

�0
q3.

Given these four results, we necessarily obtain xm13 = xm12 = xm32 = 1 and xl23 = xl21 =
xl31 = 1. It is easily veri�ed that this speci�cation satis�es the necessary and su¢ cient condition
in Proposition 2, i.e. the corresponding feasible region de�ned by rules (PP-i)-(PP-v) is non-
empty.

Step 2. Next, we consider recovery of the sharing rule. Using rules (PP-ii) and (PP-v) (together

with p03q1 �
�
Pm;h
3

�0
q1 and p03q2 �

�
Pl;h
3

�0
q2, which hold by construction), we obtain

xm13 = 1) bym3 � p03q1 = 0:5 + �=2) byl3 = y3 � bym3 � 0:5� �=2;
xl23 = 1) byl3 � p03q2 = 0:5 + �=2) bym3 = y3 � byl3 � 0:5� �=2;

or, when � becomes arbitrarily small we obtain very tight bounds (around 0.5) for the feasible
income shares by13 and by23:
Similarly, we get

xm32 = 1) bym2 � p02q3 = �=2) byl2 = y2 � bym2 � 1� �=2;
xl31 = 1) byl1 � p01q3 = �=2) bym1 = y1 � byl1 � 1� �=2;

which again obtains tight bounds for bymt and bylt (t = 1; 2) when � gets small. For example, �
arbitrarily close to zero yields bym1 � 1, byl1 � 0 and bym2 � 0, byl2 � 1.
Two remarks are in order. First, this result has a clear interpretation in terms of the

�bargaining power�of the individual members, for which the sharing rule can be interpreted as
an indicator. Speci�cally, consider � arbitrarily small. In that case, member m can be conceived
as the (quasi) �dictator�in situation 1 (i.e. member m is solely responsible for the full household
budget or bym1 � y1) while the other member l is the �dictator�in situation 2 (byl2 � y2); in situation
3, �nally, the aggregate income is split equally over the two members (by13 � by23 � 0:5y3).
Second, the proposed method allows for imposing a whole series of additional restrictions

on the sharing rule (or, alternatively, for testing speci�c hypotheses about the sharing rule).
Such restrictions preserve the MILP structure as long as they are expressed in linear form. For
instance, suppose that in our current example we impose (or assume) that the feasible income
share of the wife (member 1) is higher than that of the husband (member 2) in situation 1, i.e.by11 � by21. This immediately obtains 1� �=2 � by11 � 1, 0 � by21 � �=2 and 0 � by12 � �=2, 1� �=2 �by22 � 1; and, thus, for � arbitrarily small the mere restriction by11 � by21 implies that the wife is
the �dictator�in situation 1 (by11 � y1) and the husband is the �dictator�in situation 2 (by22 � y2).
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Alternatively, one can put upper and lower bounds (or test corresponding assumptions) on the
relative income share of some memberm in situation t, i.e. ym

t
� bymt =yt � ymt for ymt , ymt 2 [0; 1];

the linear nature of these constraints is consistent with the MILP formulation given above. For
instance, our result implies that any lower bound ym

t
> �=2 for some m and all t will be rejected

for this speci�c data structure. Finally, additional sharing rule restrictions can impose a speci�c
relationship between feasible income shares of the same member m in di¤erent situations (e.g.
time periods). For instance, suppose that we assume in the current example that the feasible
income share of the wife must be higher in situation 1 than in situation 2, i.e. by11 � by12; this
directly obtains 1� �=2 � by11 � 1, 0 � by12 � �=2 and 0 � by21 � �=2, 1� �=2 � by22 � 1.
Step 3. Let us then consider recovery of the feasible personalized prices. As a starting point,
we use our conclusion for the feasible income shares, which can be summarized as

1� �=2 � bym1 � 1 and 0 � byl1 � �=2;
0 � bym2 � �=2 and 1� �=2 � byl2 � 1;

0:5� �=2 � by13 � 0:5 + �=2 and 0:5� �=2 � by23 � 0:5 + �=2:
For the given data structure, this implies (using (PP-ii))

1� �=2 �
�
Pm;h
1

�
1
� 1 and 0 �

�
Pl;h
1

�
1
� �=2;

0 �
�
Pl;h
2

�
2
� �=2 and 1� �=2 �

�
Pm;h
2

�
2
� 1;

0:5� �=2 �
�
P1;h
3

�
3
� 0:5 + �=2 and 0:5� �=2 �

�
P2;h
3

�
3
� 0:5 + �=2:

We thus get very tight bounds for
�
Pm;h
t

�
t
and

�
Pl;h
t

�
t
when � gets arbitrarily small. To

illustrate the impact of additional structure, suppose that
�
P1;h
1

�
1
>
�
P2;h
1

�
1
, i.e. the wife

contributes more to the �rst good in situation 1. For � arbitrarily small, this mere restriction
implies that the wife �pays�(quasi) everything of the �rst good in situation 1 (

�
P1;h
1

�
1
� (p1)1),

while the husband pays everything of the second good in situation 2 (
�
P2;h
2

�
2
� (p2)2); �nally, in

situation 3 the expenditure for the third good is equally split (
�
P1;h
3

�
3
�
�
P2;h
3

�
3
� 0:5 (p3)3).

3.2. Private consumption without externalities

In this section, we consider the speci�c case that excludes externalities and public consumption
(Qt = (0; :::;0;0)); i.e. all goods are private and group members are of the �egoistic� type.
In terms of the general condition for collective rationality in De�nition 2, this means that we
consider member-speci�c utility functions Um (qm;Q) = V m (qm). At this point, it is worth
noting that this case actually also encompasses a wider class of member-speci�c utilities that
model �altruism�in a speci�c way: it also includes so-called �caring preferences�, which corre-
spond to utility functions Um (qm;Q) = Wm

�
V 1 (q1) ; :::; V M

�
qM
��
that depend not only on

member m�s own �egoistic�utility but also on the other member l�s utility de�ned in terms of
ql. Chiappori (1992) argues that every Pareto e¢ cient outcome in terms of caring preferences
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(Wm) is also Pareto e¢ cient in terms of egoistic preferences (V m). In other words, under Pareto
e¢ ciency the empirical implications of caring preferences are indistinguishable from those of
egoistic preferences.
As a preliminary note, we recall that under the stated conditions, which imply Qt =

(0; :::;0;0) for the feasible personalized quantities, any set bSA of feasible personalized prices
and quantities must meet

qt=
MX
m=1

qmt with q
m
t � qAmt . (3.1)

This implies the �trivial�bounds

(0 �) qAmt � qmt �
�
qt �

XM

l=1;l 6=m
qAlt

�
(� qt) : (3.2)

We will show that collective rationality imposes additional restrictions on the personalized
private quantities that can imply (substantially) tighter bounds than those in (3.2). We will also
demonstrate that very tight bounds can be obtained even if no assignable quantity information
is available.
Like before, we �rst formulate the necessary and su¢ cient condition for collective rationality

that is relevant in the present case. This condition follows directly from Proposition 1.

Corollary 2. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. For
Um (qm;Q) = V m (qm) ; m = 1; :::; M; there exists a combination of M concave and con-
tinuous utility functions U1; :::; UM that provide a collective rationalization of SA if and only if
there exist feasible personalized quantities bqt with qt=PM

m=1 q
m
t such that for each member m

the set f(pt; qmt ) ; t = 1; :::; Tg satis�es GARP:

Once more, we can reformulate this condition as requiring that the feasible set of a speci�c
MILP problem is non-empty. This is contained in the following result.

Proposition 3. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. There
exist feasible personalized quantities bqt with qt=PM

m=1 q
m
t such that for each member m = 1;

:::; M the set f(pt; qmt ) ; t = 1; :::; Tg satis�es GARP if and only if there exist non-negative qmt ,bymt and xmst 2 f0; 1g that satisfy
(PQ-i) qt=

PM
m=1 q

m
t ,

(PQ-ii) qAmt � qmt ;
(PQ-iii) bymt = p0tqmt ;
(PQ-iv) byms � p0sqmt < ysxmst ;
(PQ-v) xmsu + x

m
ut � 1 + xmst ; and

(PQ-vi) bymt � p0tqms � yt (1� xmst) :
The di¤erent �personalized quantity�(PQ) constraints have a similar interpretation as the

personalized price (PP) constraints in Proposition 2. Rules (PQ-i) and (PQ-ii) repeat the
constraints in (3.1). Rule (PQ-iii) follows from De�nition 5 of feasible income shares. Rule
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(PQ-iv) implies that, if bymt � p0sq
m
t , then we must have x

m
st = 1 (which corresponds to bqs Rmbqt): Rule (PQ-v) imposes transitivity. Finally, rule (PP-vi) requires that, if xmst = 1 (bqsRmbqt),

then bymt �
�
Pm;h
t

�0
qs. As such, Proposition 3 de�nes a necessary and su¢ cient condition

for collective rationality (under the assumption Um (qm;Q) = V m (qm)) that can be tested
through MILP. Given this characterization, we can de�ne upper and lower bounds on feasible
income shares and feasible personalized quantities by solving MILP optimization problems. For
example, an upper (or, conversely, lower) bound on the feasible personalized quantity of an
individual good e (1 � e � n) is obtained by optimizing the objective max (qmt )e (or min (qmt )e)
subject to (PQ-i)-(PQ-vi).
Example 6 illustrates the result. It demonstrates that the proposed method can obtain

very tight bounds when the number of observations is small. In addition, it shows that such
tight bounds can be obtained for the feasible personalized quantities even if no assignable quan-
tity information is available. Analogously to before, additional information can include speci�c
hypotheses regarding the group decision process (e.g. the sharing rule and the assignable quan-
tities). Again, our approach e¤ectively allows for testing such assumptions.

Example 6. We recapture the situation of Example 5, with corresponding observed prices and
aggregate quantities. This example does not include assignable quantity information, so that
(PQ-ii) does not add information.
As for the feasible income shares, an analogous reasoning as in Steps 1 and 2 of Example 5

yields the conclusion (for m 6= l)

1� �=2 � bym1 � 1 and 0 � byl1 � �=2;
0 � bym2 � �=2 and 1� �=2 � byl2 � 1;

0:5� �=2 � by13 � 0:5 + �=2 and 0:5� �=2 � by23 � 0:5 + �=2:
Focusing on the feasible personalized quantities, this implies (using (PQ-iii))

1� �=2 � (1 + �) (qm1 )1 � 1 and 0 � (1 + �)
�
ql1
�
1
� �=2;

0 � (1 + �)
�
ql2
�
2
� �=2 and 1� �=2 � (1 + �) (qm2 )2 � 1;

0:5� �=2 �
�
q13
�
3
� 0:5 + �=2 and 0:5� �=2 �

�
q23
�
3
� 0:5 + �=2:

We thus obtain

(1� �=2) =(1 + �) � (qm1 )1 � 1=(1 + �) and 0 �
�
ql1
�
1
� �= (2(1 + �)) ;

0 �
�
ql2
�
2
� �= (2(1 + �)) and (1� �=2) =(1 + �) � (qm2 )2 � 1=(1 + �);

0:5� �=2 �
�
q13
�
3
� 0:5 + �=2 and 0:5� �=2 �

�
q23
�
3
� 0:5 + �=2:

This yields very tight bounds for (qmt )t and
�
qlt
�
t
when � gets arbitrarily small. To illustrate

the impact of additional structure, suppose that (q11)1 > (q
2
1)1, i.e. the wife consumes more of

the �rst good in situation 1. For � arbitrarily small, this sole restriction immediately obtains
that the wife consumes (quasi) everything of the �rst good in situation 1 ((q11)1 � (q1)1), while
the husband consumes everything of the second good in situation 2 ((q22)2 � (q2)2); �nally, in
situation 3 the third good is equally split ((q13)3 � (q23)3 � 0:5 (q3)3).
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3.3. Extensions

To conclude, we indicate that the previous methodology allows for a number of interesting
extensions. As illustrated in our examples, it enables us to test speci�c hypotheses regarding
the collective decision process (e.g. on the sharing rule, in Example 5). In what follows, and
without being exhaustive, we point out three additional applications. Because we believe the
formal analogy with the previous discussion is fairly easy, we restrict to sketching the main
arguments.

1. The previous discussion on testing and recovery restricted to (i) the case without private
consumption (with recovery of feasible personalized prices) and (ii) the case without ex-
ternalities and public consumption (with recovery of feasible personalized quantities). In
practice, intermediate cases may also be considered. In this respect, it is worth emphasiz-
ing that arguments directly analogous to those given above apply to the case in which we
can a priori identify each good as either exclusively publicly consumed or exclusively pri-
vately consumed (without externalities). (Importantly, if we want to obtain similar MILP
formulations as before, no good can be partly privately consumed (without externalities)
and partly publicly consumed.)

Formally, such an intermediate case implies Qm = 0 for all m and
�XM

m=1
qm
�
�Qh =

0 (with � the Hadamard or �element-by-element�product). Thus, we must consider setsbSA of feasible personalized prices and quantities with Qm
t = 0 and

�XM

m=1
qmt

�
�Qh

t = 0.
Given this, an analogous argumentation as before establishes a necessary and su¢ cient
condition for collective rationality that is essentially a �hybrid�version of the conditions in
Propositions 2 and 3. This characterization obtains an operational MILP test for collective
rationality, which in turn enables the recovery of bounds on feasible income shares, feasible
personalized prices (for the goods that are publicly consumed) and feasible personalized
quantities (for the goods that are privately consumed). Finally, data structures similar
to the one in Example 5 can demonstrate the potential of the method (i) to obtain very
tight bounds even if no assignable quantity information is available and the number of
observations is small, and (ii) to test alternative hypotheses (regarding the sharing rule,
feasible personalized prices and feasible personalized quantities).

2. Another interesting application concerns the recovery, or �forecasting�, of individual mem-
bers�consumption (and thus also aggregate group consumption) in a new situation de�ned
in terms of new prices pN and group income yN . For example, this allows us to compare
individual consumption and the bargaining power of some member m (captured by bymt =yt
for each situation t) in alternative (observed and new) situations. To introduce this appli-
cation, we recapture the case that excludes externalities and public consumption, which
corresponds to Um (qm;Q) = V m (qm); this allows us to develop similar MILP formula-
tions as before.

Essentially, we have to construct the set of feasible personalized quantities qmN that meet

yN = p
0
NqN for aggregate group demand qN =

XM

m=1
qmN , such that each set f(pt; qmt ) ;

t = 1; :::; Tg [ f(pN ; qmN)g satis�es GARP ; every feasible speci�cation of the qmN de�nes
feasible income shares bymN = p0Nq

m
N . The MILP characterization of the set of feasible
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personalized quantities qmN 2 Rn+ and feasible income shares bymN 2 R+ is then a direct
extension of the one in Proposition 3. We remark that this MILP formulation easily
includes alternative prior assumptions regarding the consumption quantities in the new
situation. For example, we can restrict the proportions of the group quantities that will
be consumed by the individual group members (e.g. in a two-member household, such a
restriction can impose that a particular good is exclusively consumed by the husband);
this boils down to imposing additional constraints of the form �m � qN � qmN � �m � qN
for �m; �m 2 Rn+: Generally, such additional restrictions preserve the MILP structure as
long as they are expressed in linear form.

3. A �nal extension involves recovering the behavior of some member m in a new situation
de�ned in terms of new prices pN and a given utility level (i.e. the same utility level for
member m as the initially observed bundle qI , I 2 f1; :::; Tg). In such an application, the
recovered bounds on the feasible income shares can subsequently be used for constructing
member-speci�c cost-of-living indices (corresponding to the prices pN and the same utility
level as qI for m); compare with Varian (1982), Blow and Crawford (2001) and Blundell,
Browning and Crawford (2003), who conduct nonparametric cost-of-living analyses in a
unitary setting. For example, this may be useful for comparing the cost-of-living of indi-
viduals living alone with that of the same individuals living in a multi-member household;
compare with Browning, Chiappori and Lewbel (2006), who address such a question by
using parametric methods.

Again, we consider the situation without externalities or public consumption. In this
case, we need to characterize the feasible personalized quantities qmN (which de�ne feasi-
ble income shares bymN = p0Nq

m
N for member m) that simultaneously meet the following

conditions: (i) the set f(pt; qmt ) ; t = 1; :::; Tg [ f(pN ; qmN)g must satisfy GARP ; (ii) for
member m the quantities qmN must be �equally good�as those corresponding to the initial
bundle qI . Once more, the MILP formulation of condition (i) follows immediately from
Proposition 3. As for condition (ii), we must include the additional restrictions xmsI � xmsN
and xmIt � xmNt: the �rst constraint implies x

m
sN = 1 if xmsI = 1 (which complies with �bqs

RmbqN if bqs RmbqI�), and the second constraint requires xmNt = 1 if xmIt = 1 (�bqN Rmbqt if bqI
Rmbqt�). Using this characterization, we can de�ne bounds on the feasible income shares
(bymN ) and the feasible personalized quantities ((qmN)e for some good e) by solving MILP
problems. Like before, we can also include alternative prior assumptions regarding the
consumption quantities in qmN ; such additional restrictions preserve the MILP structure as
long as they are expressed in linear form.

4. The general case: testing

We next turn to the general collective consumption model de�ned in De�nition 2, which accounts
for public consumption and externalities of any good. For this case, we do not observe the �true�
speci�cation of either the feasible personalized prices

�bp1t ; :::; bpMt � or the feasible personalized
quantities bqt. This is in sharp contrast with the special cases in Section 3; for the condition
in Proposition 1, it excludes developing an equivalent MILP formulation similar to the ones in
Propositions 2 and 3. The observed set SA usually allows for multiple speci�cations of both
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�bp1t ; :::; bpMt � and bqt, and each such speci�cation implies di¤erent restrictions in terms of the
relations Rm0 and R

m.
Therefore, in the following we focus on testable restrictions on Rm0 and R

m that are directly
expressed in terms of observed prices and quantities, and that do not refer to a speci�c bSA. This
obtains a testable necessary condition for data consistency with the general collective model
which solely uses the prices and quantities that are e¤ectively observed; this condition extends
the necessary condition of Cherchye, De Rock and Vermeulen (2007) by accounting for assignable
quantity information. Consistent with our (MILP-based) approach in Section 3, we show that
this necessary condition can be reformulated in integer programming (IP) terms, which is again
attractive for practical applications. In addition, as we will discuss in Section 5, it provides a
useful basis for sharing rule recovery in the case of the general collective consumption model.

4.1. A preliminary result

Before introducing our testable necessary condition, we present a lemma that provides the
starting point of our approach. It implies that we can start from the set SA for specifying
restrictions on Rm0 . Moreover, the equivalence results imply that we cannot do better when
using only the set of observations SA (rather than a speci�c bSA).
Lemma 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. For any s
and t, we have the following two equivalence results (for m 2 f1; :::;Mg):
(i)
h
for all sets bSA, there exists m : bqsRm0 bqti , [p0sqs � p0sqt] ;

(ii) for m:
hbqsRm0 bqt for all sets bSAi , h

p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�i
:

Rule (i) does not use assignable quantity information and pertains to the Pareto e¢ cient
nature of group behavior in the collective model; for M = 2, it equals Lemma 1 of Cherchye,
De Rock and Vermeulen (2007). Speci�cally, if the group has chosen qs when qt was equally
available (p0sqs � p0sqt), then we always have that, independently of the speci�cation of the setbSA, at least one group member m must prefer the former (personalized) quantities to the latter
(i.e. bqs Rm0 bqt); the identity of member m depends on the speci�cation of bSA that is used.
Rule (ii) does use assignable quantity information, and shows that this e¤ectively allows us

to �assign�preference relations to an individual group member m; such �assignable�relations for
member m hold for any speci�cation of bSA. It uses that, by construction, (bpms )0 bqs � p0sq

Am
s

and p0s
�
qt �

PM
l=1;l 6=m q

Al
t

�
� (bpms )0 bqt, so that

p0sq
Am
s � p0s

�
qt �

XM

l=1;l 6=m
qAlt

�
implies (bpms )0 bqs � (bpms )0 bqt for any bSA;

and it follows from this last inequality that bqs Rm0 bqt for any bSA. In words, the �minimal�
(assignable) expenditures of member m in observation s exceed the �maximal� expenditures
of that member for bundle t (under the prices ps), which implies that member m �reveals�
her/his preference for bundle s over bundle t. In the limiting case that all goods are fully

assignable (qt =
XM

m=1
qAmt , which implies qmt = q

Am
t ) the right hand side of rule (ii) reduces

to p0sq
Am
s � p0sqAmt and, thus, all member-speci�c preference relations are assignable.
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Rule (ii) implies that assignable quantity information implies additional empirical restrictions
as compared to the limiting case with qAmt = 0 for each m and t (i.e. no assignable quantity
information, so that only rule (i) can be used). To illustrate, we consider Example 7, which shows
that assignable quantity information allows for recovering preference relations Rm0 even if rule (i)
is not applicable. This suggests that, in general, the use of assignable quantity information can
obtain a testable condition for collective rationality that is stronger than the one that is solely
based on rule (i), which was originally presented by Cherchye, De Rock and Vermeulen (2007).
Consequently, such assignable information can entail a more powerful empirical analysis. The
more stringent testable condition will be discussed next.

Example 7. Consider a two-member household (M = 2) with a wife (member 1) and a husband
(member 2) that consumes three goods (n = 3). Suppose two observations with aggregate
quantities and prices

q1 = (4; 2; 2)0 ;p1 = (4; 5; 1)
0 ;

q2 = (2; 4; 2)0 ;p2 = (1; 4; 5)
0 ;

and assignable quantities

qA11 = (3; 0; 0)0 and qA21 = (0; 1; 2)0 ;

qA12 = (0; 1; 1)0 and qA22 = (1; 3; 0)0 :

We then obtain p01q
A1
1 (= 12) > p01

�
q2 � qA22

�
(= 11) and thus, on the basis of rule (ii) in

Lemma 1, we can conclude bq1 R10 bq2 for every set bSA; i.e., for every feasible speci�cation of the
personalized prices and quantities �bq1 is directly revealed preference to bq2�by the wife. On the
other hand, we have p01q1(= 28) < p

0
1q2(= 30), and so we cannot use rule (i) (to conclude bq1

Rm0 bq2, m = 1 or 2, for any set bSA).
4.2. Testable necessary condition

The basic idea of our testable condition is to formulate restrictions on �feasible�speci�cations
of the relations Rm0 and R

m, which are expressed in terms of the observed information summa-
rized in the set SA. Such feasible speci�cations are then referred to as hypothetical relations.
Speci�cally, we specify qs Hm

0 qt if we hypothesize bqs Rm0 bqt; Hm denotes the transitive closure
of the relation Hm

0 :We say that a collective rationalization of the data in the sense of De�nition
2 is impossible if there does not exist a feasible speci�cation of these hypothetical relations
that satis�es the restrictions de�ned in the following Proposition 4. This de�nes a necessary
condition for collectively rational behavior as characterized in Proposition 1. In addition, as
we will discuss, it implies an operational test for data consistency with the general collective
consumption model.6

6We note that rules (iv) and (v) re�ne rules (iii) and (iv) originally de�ned by Cherchye, De Rock and
Vermeulen (2007, Proposition S3); the new rules (iv) and (v) strengthen the original rules (iii) and (iv) in that
they imply them as a special case.
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Proposition 4. Suppose that there exists a combination of M utility functions U1; :::; UM

that provide a collective rationalization of the set of observations SA = f(pt;qt;qA1t ; :::;qAMt );
t = 1; :::; Tg. Then there exist hypothetical relations Hm

0 and Hm, m = 1; :::;M , such that:

(i) if p0sqs � p0sqt, then qs Hm
0 qt for some m;

(ii) if p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
, then qs Hm

0 qt;

(iii) if qs Hm
0 qu; qu H

m
0 qv; :::; qz H

m
0 qt for some (possibly empty) sequence (u; v; :::; z), then

qs H
m qt;

(iv) for M* � M and M  f1; :::;Mg : if p0sqs � p0s

�PM*
k=1 qtk

�
and for all m 2 M we have

qtk(m) H
m qs for some k (m) �M*, then qs H l

0 qtk for some l =2M and k �M*;

(v) for M* � M and M  f1; :::;Mg : if p0sqs � p0s

�PM*
k=1 qtk

�
and for all m 2 M we have

qtk(m) H
m qs for some k (m) �M*�1, then qs H l

0 qtM*
for some l =2M;

(vi) for M* � M : if for all m we have qsk(m) H
m qt for some k (m) � M*, then p0tqt �PM*

k=1 p
0
tqsk ;

(vii) if qs Hm qt, then p0tq
Am
t � p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
.

Hence, a collective rationalization of the set SA requires that there exists at least one speci�-
cation of the relations Hm

0 and H
m consistent with rules (i)-(vii) in this proposition. Of course,

in general there may be multiple feasible speci�cations of Hm
0 and Hm that obtain consistency

with rules (i)-(vii).
Let us then interpret the di¤erent rules in Proposition 4. First, rules (i) and (ii) follow

immediately from Lemma 1, when replacing the relations Rm0 by their hypothetical counterparts
Hm
0 : Next, rule (iii) de�nes the transitive closures H

m of the relations Hm
0 :

The interpretation of the remaining rules (iv) to (vii) pertains to the very nature of the
collective model, which -to recall- explicitly recognizes the multi-person nature of the group
decision process. Rules (iv) and (v) compare qs to (combinations of) M� di¤erent bundles qtk .
First, rule (iv) expresses that, if all members m 2 M prefer some qtk(m) over qs for the (sum)

bundle
PM*

k=1 qtk not more expensive than qs, then the choice of qs can be rationalized only if
another member l =2 M prefers qs over some qtk . Next, rule (v) expresses that, if (aggregate)
qs is more expensive than the (sum) bundle

PM*
k=1 qtk , while each member m 2M prefers qtk(m)

(with k (m) �M*�1) over qs, then the only possibility for rationalizing the choice of qs is that
another member l =2M prefers qs over the remaining bundle qtM*

.
Rules (i) to (v) de�ne restrictions on the relations Hm

0 and Hm. For a speci�cation of these
relations, rules (vi) and (vii) de�ne the corresponding upper cost bound conditions. Rule (vi)
complements rules (iv) and (v). It states that, if each member m prefers qsk(m) (k (m) � M*)
over qt, then the choice of qt can be rationalized only if it is not more expensive than the
(sum) bundle

PM*
k=1 qsk . In this expression, we can have M* < M because it is possible that

sk(m) = sk(l) for l 6= m (i.e. �members m and l both prefer the same bundle qsk(m) (= qsk(l)) over
qt�).
Finally, rule (vii) reveals that the assignable quantity information makes it possible to for-

mulate separate upper cost bound conditions for the individual group members, whereas the
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upper cost bound de�ned by rule (vi) corresponds to all members simultaneously. More specif-
ically, rule (vii) expresses that, if member m prefers qs over qt, then the latter choice can be

rationalized only if p0tq
Am
t � p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
.

An important observation is that the condition in Proposition 4 is empirically rejectable, i.e.
we can �nd data that do not satisfy the condition. Cherchye, De Rock and Vermeulen (2007)
provide such an example for the case when there is no assignable quantity information (qAmt = 0
for each m and t). They show that, in such a situation,M+1 observations andM+1 goods are
both necessary and su¢ cient to reject the general collective consumption model for M -member
group behavior.
Example 8 provides an illustration that uses assignable quantity information; it obtains

rejection of collective rationality with two observations (T = 2) for a two-member household
(M = 2). In fact, when assignable quantity information is available, then in general it su¢ ces to
have two observations and goods to reject collective rationality of M -member group behavior.
Speci�cally, it is easy to verify that in the limiting case that all goods are fully assignable (i.e.

qt =
XM

m=1
qAmt and thus qmt = qAmt ), the condition in Proposition 4 boils down to GARP

consistency of the sets f
�
pt;q

Am
t

�
; t = 1; :::; Tg corresponding to each member m; and this is

rejected if p0tq
Am
t > p0tq

Am
s and p0sq

Am
s > p0sq

Am
t (for some m and t; s), which requires only two

goods and two observations. This again illustrates that, in general, more assignable quantity
information will entail more powerful results.

Example 8. We recapture the situation of a household with two members and three goods in
Example 7. This speci�c data structure implies q1 H1

0 q2 because of rule (ii). But then rule
(vii) is not met because p02q

A1
2 (= 9) > p02

�
q1 � qA21

�
(= 8). Thus, we conclude a violation of

the condition in Proposition 4.

4.3. Integer programming formulation

In this section, we show that the necessary condition in Proposition 4 can be reformulated in IP
terms, which is attractive from an operational point of view. As a preliminary step, we de�ne
the binary variables aM� [s; t1; :::; tM*], bm[s; t] 2 f0; 1g (for m;M* 2 f1; :::;Mg, s; t 2 f1; :::; Tg)
and ft1; :::; tM*g � f1; :::; Tg:

aM*[s; t1; :::; tM*] = 1 if p0sqs �
PM�

k=1 p
0
sqtk and aM*[s; t1; :::; tM*] = 0 otherwise;

bm[s; t] = 1 if p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
and bm[s; t] = 0 otherwise.

These variables capture the available information that is used in rules (i)-(vii) of Proposition
4. We next formulate these rules as IP constraints. To do so, we again de�ne the binary
variables xmst 2 f0; 1g. As we focus on the necessary condition, which is expressed in hypothetical
preference relations, xmst = 1 must now be interpreted as �qs H

m qt�.
Given this, rules (i) and (ii) are equivalent to, respectively,

(IP-i)
PM

m=1 x
m
st � a1[s; t] and (IP-ii) xmst � bm[s; t]:

The constraint (IP-i) implies that, if a1[s; t] = 1, then xmst = 1 for some m. Similarly, the
constraint (IP-ii) implies that, if bm[s; t] = 1, then xmst = 1:
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Rule (iii) corresponds to

(IP-iii) xmsu + x
m
ut � 1 + xmst :

Thus, if xmsu = x
m
ut = 1 then x

m
st = 1, which imposes transitivity.

To provide the IP formulation of rule (iv), for each combination (t1; :::; tM*) and any subset
M  f1; :::;Mg, we consider k (m) �M* for all m 2M. Given this, rule (iv) complies with
(IP-iv) for each (t1; :::; tM*), M  f1; :::;Mg and correspondingly de�ned k (m) � M* for all
m 2M :

aM*[s; t1; :::; tM*] +
P

m2M x
m
tk(m)s

� jMj+
P

l =2M
PM*

k=1 x
l
stk
:

This imposes that, if aM*[s; t1; :::; tM*] = 1 and for all m 2M we have xmtk(m)s = 1, then we must
have xlstk = 1 for some l =2M and k �M*.
Similarly, for rule (v) we consider k (m) �M*�1 for all m 2M: Rule (v) then corresponds

to

(IP-v) for each (t1; :::; tM*),M  f1; :::;Mg and correspondingly de�ned k (m) �M*�1 for all
m 2M :

aM*[s; t1; :::; tM*] +
P

m2M x
m
tk(m)s

� jMj+
P

l =2M x
l
stM*

:

The interpretation is that, if aM*[s; t1; :::; tM*] = 1 and for all m 2M we have xmtk(m)s = 1, then
for the remaining tM* we must have xlstM*

= 1 for some l =2M.
Next, to de�ne the IP formulation of rule (vi), for each M* we consider every combination

(sk(1); :::; sk(M)) with k (m) � M* for all m 2 M; note that we can have k (m) = k (l) (m 6= l)
so that M* �M . Given this, rule (vi) is equivalent to
(IP-vi) for each (sk(1); :::; sk(M)) with k (m) �M* for all m :PM

m=1 x
m
sk(m)t

�M � aM*[t; s1; :::; sM*] if p0tqt <
PM�

k=1 p
0
tqtk :

This gives the upper cost bound condition that applies to all members simultaneously.7 For
every possible combination

�
sk(1); :::; sk(M)

�
, it speci�es that, if for each m we have xmsk(m)t = 1,

then it must be that aM*[t; s1; :::; sM*] = 0 (using that k (m) �M* for all m).
Finally, rule (vii) complies with

(IP-vii) xmst � 1� bm[t; s] if p0tqAmt > p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
:

This imposes that, if xmst = 1, then it must hold that bm[t; s] = 0. It speci�es an upper cost
bound condition for each individual member m.
As such, testing consistency with collective rationality requires checking whether the con-

straints (IP-i)-(IP-vii) characterize a non-empty feasible region (for xmst 2 f0; 1g). Every feasible
speci�cation of the binary variables xmst corresponds to a speci�cation of the relations H

m con-
sistent with rules (i)-(vii) in Proposition 4.
To conclude, we provide the simple numerical Example 9 as an illustration.

7For completeness, we note that the inequality constraint in (IP-vi) can equivalently be formulated asPM
m=1 x

m
sk(m)t

�M� asM* [t; s1; :::; sM* ] for asM* [t; s1; :::; sM* ] = 1 if p0tqt >
PM�

k=1 p
0
tqtk and a

s
M* [t; s1; :::; sM* ] = 0

otherwise. An analogous quali�cation applies to (IP-vii).
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Example 9. We recapture the situation of a household with two members and three goods in
Examples 7 and 8. For this speci�c data structure the inequality p01q

A1
1 (= 12) > p

0
1

�
q2 � qA22

�
(=

11) implies b1[1; 2] = 1, and thus x112 = 1 because of (IP-ii). Given this, (IP-vii) requires
b1[2; 1] = 0, which contradicts p02q

A1
2 (= 9) > p

0
2

�
q1 � qA21

�
(= 8): As such, we obtain an empty

feasible region and conclude that the condition in Proposition 4 is violated.

4.4. Remarks

As mentioned before, the necessary condition developed in this section extends the necessary
condition of Cherchye, De Rock and Vermeulen (2007) by including the possible use of assignable
quantity information. This directly obtains that the necessary condition is in general not suf-
�cient. The result follows from Example 2 of Cherchye, De Rock and Vermeulen (2007): for
M = 2, it presents data (without assignable quantity information) that satisfy the condition but
cannot be collectively rationalized in the sense of Proposition 1. For general T , the condition

is su¢ cient if all goods are fully assignable (qt =
XM

m=1
qAmt , which implies qmt = qAmt ). In

addition, it is su¢ cient if M = 1, when it reduces to the usual GARP condition for individually
rational behavior (see Varian, 1982). (In fact, the same quali�cation holds for the conditions
in Propositions 2 and 3.) In these cases, the feasible personalized prices and quantities are all
observed.
We see at least the following arguments to motivate our focus on the necessary condition in

Proposition 4. First, the condition is always su¢ cient for T not �too large�, which depends on
the number of membersM and the assignable quantity information. For example, Cherchye, De
Rock and Vermeulen (2007) argue that, for M = 2, it is su¢ cient if T � 4 and if no assignable
quantity information is available (qAmt = 0 for each t and m); but, ceteris paribus, the condition
is no longer su¢ cient for T = 5. Similar results can be derived for M > 2 and qAmt 6= 0 for
some t and m.
Next, Cherchye, De Rock and Vermeulen (2007, Proposition S4) present a testable su¢ cient

condition for the general collective model, which can easily be adapted to the current set-up
with assignable quantity information. (Alternative su¢ cient conditions for the general model are
those in Propositions 2 and 3, which are necessary and su¢ cient for special cases of the general
model.) Interestingly, these authors also provide a �convergence�argument for the case without
assignable quantity information, which states that the empirical implications of their su¢ cient
condition generally come closer to those of the necessary condition in Proposition 4 when the
sample size gets larger; i.e. both conditions become equally powerful for larger T . Again, this
convergence argument is easily adapted to account for assignable quantity information.
Another argument relates to the subtle di¤erence between �collectively rational household

behavior�and �data consistency with collectively rational household behavior�: While inconsis-
tency with a necessary condition necessarily implies collectively irrational behavior, consistency
with a su¢ cient condition in general does not imply collectively rational behavior; it only implies
data consistency with collectively rational consumption behavior. In other words, any su¢ cient
condition only allows for �non-rejection�(but not for �acceptance�) of the collective rationality
hypothesis.
Finally, our focus on the necessary condition falls in line with the very nature of the nonpara-

metric approach that we follow, which typically focuses on the minimal (or �necessity�) empirical
restrictions that can be obtained from the available data. In Section 5, we will argue that the
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necessary condition provides a powerful basis for recovering bounds on feasible income shares
that underlie the observed (collectively rational) group behavior. Speci�cally, we derive bounds
that must be respected by any set bSA that provides a collective rationalization of the data in the
sense of Proposition 1; this is a direct consequence of the fact that our recovery method starts
from a necessary condition (and not a su¢ cient condition) for collective rationality.

5. The general case: recovery

In this section, we will show that the necessary condition in Proposition 4 allows for sharing
rule recovery in the case of the general collective consumption model, and that such recovery
is possible through MILP. As a preliminary remark, we indicate that our use of a necessary
condition for collective rationality as a starting point entails a subtle di¤erence with the recovery
results in Section 3, which were based on necessary and su¢ cient conditions for (special cases of)
collective rationality. In particular, a speci�c feasible income share for member m that respects
the upper and lower bounds that we will characterize must no longer necessarily correspond to
a set bSA that collectively rationalizes the data. Such necessary correspondence is only the case
when the necessary condition is also su¢ cient; see also our discussion at the end of Section 4.
Still, we believe that the bounds that we will present do provide useful information, even when
the necessary condition is not su¢ cient: in our opinion, the fact that they necessarily bound
each feasible income share for member m that is de�ned by a data rationalizing set bSA is the
more important property in view of practical applications.

5.1. An independence result

Before addressing recovery of the sharing rule, we argue that the necessary condition in Propo-
sition 4 provides a useful basis for recovery. To do so, we show that, if assignable quantity
information can be used, this necessary condition for M = M 0 with M 0 > 1 is independent
of the GARP condition for the unitary model, which -to recall- coincides with the collective
rationality condition for M = 1 (i.e. individual rationality): data consistency with the nec-
essary condition for M 0 members is neither necessary nor su¢ cient for data consistency with
the unitary GARP condition. Because Varian (1982) used this unitary GARP condition for
addressing recovery questions in the unitary setting, we believe this convincingly motivates our
use of the necessary condition as a basis for (in casu sharing rule) recovery in the case of the
general collective consumption model.
Example 10 illustrates the independence result by presenting (i) data that do not satisfy

the individual rationality condition for M = 1 while they do pass the necessary condition
for M = 2 and (ii) data that satisfy the individual rationality condition for M = 1 but not
the necessary condition for M = 2; similar examples can be conceived for any M 0 > 1. As
such, considering additional members should not necessarily imply a weaker test; the necessary
condition for multi-member collective rationality should not have weaker empirical implications
than the GARP condition for individual rationality if there is assignable quantity information.
(In this respect, it is also worth recalling that the GARP condition for individual rationality
coincides with the necessary condition in Proposition 4 for M = 1.)
At this point, we note that Chiappori (1988; Examples 1-2 on p. 76-77) obtains a similar

independence conclusion for his collective labor supply model in the case of egoistic agents.
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The approach followed in this paper (including Example 10) clari�es that the independence
essentially relates to the assignable quantity information that is available (in Chiappori�s Ex-
amples 1-2, this information pertains to observed leisure of the individual household members
in combination with the assumption of egoistic preferences). In other words, if no assignable
quantity information is available, then we do have that data consistency with the necessary
condition for M 0 members is always necessary for data consistency with the GARP condition
for 1 member; but this is no longer the case if we can assign private consumption quantities
(without externalities) to individual household members.

Example 10. As a �rst illustration, we recapture the data (observed prices and aggregate
quantities) in Examples 1 and 2. On the one hand, Example 3 concludes that these data satisfy
the necessary and su¢ cient condition in Proposition 1 (and thus also the necessary condition
in Proposition 4) when using the corresponding assignable quantities for M = 2; in words,
a data rationalization in terms of �two-member rationality� is possible. On the other hand,
it is easily veri�ed that these data do not satisfy the unitary GARP condition (i.e. there
is a single decision maker and, thus, bSA = f(pt;qt) ; t = 1; 2g). Speci�cally, we have that
p01q1(= 26) > p

0
1q2(= 23) while p

0
2q1(= 23) < p

0
2q2(= 26), which obtains the result. This shows

that, in general, consistency with the necessary condition for M 0 (M 0 > 1) members does not
necessarily imply consistency with the unitary GARP condition.
As a second illustration, we recapture the data (observed prices and aggregate quantities)

in Example 7. On the one hand, Examples 8 and 9 conclude that these data do not satisfy the
necessary condition in Proposition 4 when using the corresponding assignable quantities for M
= 2; in words, a data rationalization in terms of �two-member rationality� is impossible. On
the other hand, it is easily veri�ed that these data do satisfy the unitary GARP condition.
Speci�cally, we have that p01q1(= 28) < p

0
1q2(= 30) and p

0
2q2(= 28) > p

0
2q1(= 22), which gives

the result. More generally, this shows that, with assignable quantity information, consistency
with the unitary GARP condition does not necessarily imply consistency with the necessary
condition for M =M 0 with M 0 > 1.

Given this indepence and the fact that Varian (1982) used the unitary GARP condition
for unitary recovery, we conclude that the necessary condition in Proposition 4 provides a
powerful basis for nonparametrically addressing sharing rule recovery. An important result in
our following discussion is that this condition can obtain precise recovery even if no assignable
quantity information is available. Still, at this point we want to stress that we do -of course-
expect assignable quantity information to yield important value-added in practical applications.
Speci�cally, the foregoing discussion makes clear that additional assignable quantity information
generally yields a more stringent necessary condition, which in turn obtains more precise recovery
results. For brevity, we will not explicitly illustrate recovery with assignable quantity information
in what follows, but we believe the analogy with the example that will be given (without
assignable quantity information) is fairly straightforward.

5.2. Sharing rule recovery

Essentially, we de�ne bounds on the feasible income shares bymt de�ned in De�nition 5 in terms of
the feasibility restrictions implied by the necessary condition in Proposition 4. As a preliminary
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step, we recall the de�nitional fact XM

m=1
bymt = yt; (5.1)

which holds for any speci�cation of the set of feasible personalized prices and quantities bSA =
f
�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg. Combination of (5.1) with qlt � qAlt for all l de�nes �trivial�upper
and lower bounds on bymt as

(0 �) p0tqAmt � bymt � p0t �qt �XM

l=1;l 6=m
qAlt

�
(� yt) ; (5.2)

and, of course, these initial bounds will generally be tighter when more assignable quantity
information is available. In the following, we will show that collective rationality (summarized
in terms of the necessary condition in Proposition 4) implies additional restrictions on the income
shares bymt that, in general, can imply (substantially) tighter bounds than those de�ned in (5.2).
To sketch the basic idea, we �rst consider a speci�c set bSA and specify the restrictions on

feasible income shares bymt that are implied by the corresponding relations Rm (without explicitly
considering the corresponding speci�cation of prices bpmt and quantities bqmt in bSA). For the given
set bSA, De�nition 4 requires bymt = (bpmt )0 bqt � (bpmt )0 bqs whenever bqs Rm bqt. Using (bpmt )0 bqs �
p0t

�
qs �

XM

l=1;l 6=m
qAls

�
, we obtain that

bymt � p0t �qs �XM

l=1;l 6=m
qAls

�
whenever bqsRmbqt.

As such, if p0t
�
qs �

XM

l=1;l 6=m
qAls

�
< p0t

�
qt �

XM

l=1;l 6=m
qAlt

�
, this obtains an upper bound on

the income share bymt of memberm that is lower than the trivial upper bound p0t �qt �XM

l=1;l 6=m
qAlt

�
in (5.2). Next, similarly constructed upper bounds for bylt (l 6= m) de�ne a lower bound for bymt
that can be higher than the trivial lower bound p0tq

Am
t in (5.2).

In practice, we do not observe a speci�c bSA and corresponding relations Rm; but the approach
developed in Section 4 allows for de�ning restrictions on �feasible�speci�cations of the Rm, which
we de�ned in terms of the hypothetical relations Hm (Proposition 4). Similar to before, we avoid
using a speci�c bSA. That is, we replace the relations Rm by their hypothetical counterparts Hm

in the above argument and, consequently, consider speci�cations of the hypothetical relations
Hm that are consistent with the rules (i)-(vii) in Proposition 4. Starting from our earlier IP
formulation of the necessary condition, we reformulate the hypothetical relations Hm in terms
of the binary variables xmst 2 f0; 1g (with, to recall, xmst = 1 interpreted as �qs Hm qt�). This
obtains the following result.

Proposition 5. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations. For any
set bSA that satis�es condition (ii) in Proposition 1, the corresponding feasible income sharesbymt , m = 1; :::;M , meet
(SR-i)

PM
m=1 bymt = yt,

(SR-ii) p0tq
Am
t � bymt , and

(SR-iii) bymt � p0t �qs �XM

l=1;l 6=m
qAls

�
� yt (1� xmst) ;
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for xmst 2 f0; 1g consistent with (IP-i)-(IP-vii).

In this result, the fact that we consider xmst 2 f0; 1g consistent with (IP-i)-(IP-vii) implies
that we focus on feasible income shares de�ned by hypothetical relations Hm that meet rules
(i)-(vii) in Proposition 4. Given this, the interpretation of the �sharing rule�(SR) constraints
is as follows. First, the constraint (SR-i) imposes (5.1) while the constraint (SR-ii) implies the
trivial bounds de�ned in (5.2); they are -of course- linear in nature. Finally, the constraint (SR-

iii) imposes bymt � p0t

�
qs �

XM

l=1;l 6=m
qAls

�
if xmst = 1 (which corresponds to qsH

mqt). Similar

to before, given this characterization of the set of feasible income shares, one can de�ne upper
(or lower) bounds on the income share for each member m by solving the MILP problem that
optimizes the objective max bymt (or min bymt ) subject to (IP-i)-(IP-vii) and (SR-i)-(SR-iii).
Example 11 illustrates the result by recapturing the data structure of Examples 5 and 6,

which considered special cases of the collective model. Interestingly, even though we impose
minimal a priori structure (in terms of preferences and assignable quantity information), we get
exactly the same sharing rule bounds as in these special cases. This also shows that the proposed
method can yield very tight bounds even if no assignable quantity information can be used and
the sample is small. Of course, we can generally expect the bounds to become tighter when
more information can be used (including additional assignable quantity information and/or more
observations). Like before, such additional information can also involve additional restrictions
(or testable assumptions) on the sharing rule; compare with our discussion of Example 5.

Example 11. We recapture the situation of Example 5, with corresponding observed prices and
aggregate quantities. Since there is no assignable quantity information (qAmt = 0 for m = 1; 2
and t = 1; 2; 3), the trivial bounds in (SR-ii) merely imply 0 � bymt � yt for each m and t and,
thus, (SR-ii) is redundant in view of (SR-i). As a preliminary step, recall that these prices and
quantities imply

y1 = 1 + �; p01q2 = 1; p
0
1q3 = �=2;

y2 = 1 + �; p02q1 = 1; p
0
2q3 = �=2;

y3 = 1; p03q1 = 0:5 + �=2; p
0
3q2 = 0:5 + �=2:

On the one hand, because p0sqs > p
0
sqt and p

0
tqt > p

0
tqs for all s; t = 1; 2; 3 we must have

qsH
mqt and qtH lqs (t 6= s and m 6= l); this follows from rules (i) and (iv) in Proposition 4: On

the other hand, rule (vi) in Proposition 4 implies that we cannot have q2Hmq1 and q3H lq1
(m 6= l) because p01q1 > p01 (q2 + q3); and, similarly, because p

0
2q2 > p02 (q1 + q3) we cannot

have q1Hmq2 and q3H lq2: Summarizing, we must always have q1Hmq3, q1Hmq2, q3Hmq2 and
q2H

lq3, q2H lq1, q3H lq1. Or, using the IP formulation, we necessarily obtain xm13 = xm12 =
xm32 = 1 and x

l
23 = x

l
21 = x

l
31 = 1. It is easily veri�ed (e.g. using the IP formulation) that this

speci�cation satis�es the necessary condition in Proposition 4 (and we recall that this condition
is also su¢ cient for T = 3 if there is no assignable quantity information).
Using (SR-i) and (SR-iii), this speci�cation of the hypothetical relations implies

xm13 = 1) bym3 � p03q1 = 0:5 + �=2) byl3 = y3 � bym3 � 0:5� �=2;
xl23 = 1) byl3 � p03q2 = 0:5 + �=2) bym3 = y3 � byl3 � 0:5� �=2:
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Similarly, we get

xm32 = 1) bym2 � p02q3 = �=2) byl2 = y2 � bym2 � 1� �=2;
xl31 = 1) byl1 � p01q3 = �=2) bym1 = y1 � byl1 � 1� �=2:

This obtains tight bounds for bymt and bylt (t = 1; 2; 3) when � gets small. For example, �
arbitrarily close to zero yields bym1 � 1, byl1 � 0 and bym2 � 0, byl2 � 1, while by13 � by23 � 0:5.
As a concluding remark, we indicate that the proposed method is not readily adapted for

recovering the feasible personalized prices and quantities for the general collective consumption
model under consideration. In fact, such non-recoverability applies for some good as soon as we
cannot identify it a priori either as exclusively privately consumed without externalities, or as
exclusively publicly consumed. (The other cases have been covered in Section 3.) To illustrate,
we consider such a good e that is privately consumed and characterized by externalities; we
exclude public consumption and private consumption without externalities to keep the argument
simple. For this good, neither the feasible personalized quantities ((Qm

t )e for each member m)
nor the feasible personalized prices ((Pl;m

t )e for each pair of membersm and l) are �xed a priori.
By using the sharing rule bounds, which -to recall- can still be recovered in this case, the method
subsequently allows for bounding the product (Pl;m

t )e (Q
m
t )e of the feasible personalized prices

and quantities. But it does not allow for separately bounding the constituent factors (Pl;m
t )e

and (Qm
t )e. Example 12 illustrates the argument.

Example 12. We recapture the situation of Example 11, with corresponding observed prices
and aggregate quantities. Suppose that the good 3 is privately consumed and characterized by
externalities, i.e. (q1t )3 = (q

2
t )3 =

�
Qh
t

�
3
= 0 for t = 1; 2; 3. The conclusion of Example 11 then

implies

0:5� �=2 �
�
P1;1
3

�
3

�
Q1
3

�
3
+
�
P1;2
3

�
3

�
Q2
3

�
3
� 0:5 + �=2 and

0:5� �=2 �
�
P2;1
3

�
3

�
Q1
3

�
3
+
�
P2;2
3

�
3

�
Q2
3

�
3
� 0:5 + �=2;

and, clearly, these non-linear constraints do not impose separate bounds for
�
P1;m
3

�
3
,
�
P2;m
3

�
3

and (Qm
3 )3. [Evidently, directly similar arguments can be constructed for the goods 1 and 2.]

Interestingly, this limitation of our method complies with a similar conclusion in the para-
metric literature (see Chiappori and Ekeland, 2005, for a detailed discussion). In that literature,
existing results fail to obtain �identi�ability�(of the decision structure underlying the observed
collective consumption behavior) in exactly the same cases in which our method fails to recover
(separate bounds on) feasible personalized prices and quantities.

6. Summary and concluding remarks

We have extended the nonparametric �revealed preference�methodology for analyzing collective
consumption behavior, so that it can be used for empirically addressing welfare-related questions
that are speci�c to the collective model. First, we established a nonparametric characterization
of collectively rational behavior that includes the possibility that assignable quantity information
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is available. Starting from this characterization, we have next presented nonparametric testing
and recovery tools for special cases of the collective model, which impose speci�c structure in
terms of consumption externalities and public consumption, as well as for the general collective
model, which imposes minimal a priori structure. We have shown that testing and recovery
is possible through integer programming (IP and MILP) with binary (or 0-1) variables as the
integer variables. Finally, while we have argued that additional assignable quantity information
generally yields more powerful recovery results, our examples also demonstrate that the proposed
methodology can obtain precise recovery even if no assignable quantity information is available.
Given all this, the next crucial step consists of bringing the proposed methodology to real-life

consumption data, to nonparametrically address the welfare-related issues listed in the intro-
duction. In this respect, two important remarks are in order. A �rst remark relates to the
e¢ cient implementation (in computational terms) of the methodology. We believe that the IP
and MILP formulations presented in the current paper convincingly show the computational
tractability of the methodology. Still, we also believe that, in practice, considerable e¢ ciency
gains can be realized by exploiting the speci�cities of the collective rationality conditions; such
enhancements of the computational e¢ ciency can be particularly useful when there are many
observations. For example, Cherchye, De Rock and Vermeulen (2005) suggest e¢ ciency en-
hancing mechanisms that exploit a number of basic theoretical insights regarding the collective
rationality tests; while these authors focus on the tests of collective rationality as they were orig-
inally proposed by Cherchye, De Rock and Vermeulen (2007), the same insights -and, probably,
further re�nements- are readily adapted to the (testing and recovery) methodology presented
in this paper. Next, focusing on the speci�c IP/MILP structure of the proposed testing and
recovery tools (with binary variables as the integer variables), one can conceive e¢ cient solution
algorithms that are specially tailored for addressing the testing and recovery questions that are
relevant for the collective model; see, for example, the general discussion in Nemhauser and
Wolsey (1999) on e¢ ciently solving IP and MILP problems. Generally, we believe the develop-
ment of e¢ cient testing and recovery algorithms constitutes an interesting avenue for follow-up
research.
The second remark that is relevant in view of practical applications pertains to the �power�

of the methodology that is proposed; this refers both to the probability of nonparametrically de-
tecting violations of collective rationality by means of the testing tools, and to the possibility of
providing tight bounds (on feasible income shares, personalized prices and personalized quanti-
ties) by means of the recovery tools. (See Andreoni and Harbaugh (2006) for a recent discussion
of the power of revealed preference tests and a survey of nonparametric power assessment tools
that are currently available.) While we have illustrated that the methodology can yield powerful
(recovery) results even if there is no assignable quantity information, we have also argued that
in general we can expect the power to increase (often substantially) when more assignable quan-
tity information is available. In our opinion, this pleads for investing in collective consumption
data sets that incorporate such information; such detailed data sets seem specially valuable for
nonparametric welfare analysis in terms of the collective consumption model. Next, the power of
the nonparametric methodology can be further increased by adapting the �sequential maximum
power path�idea of Blundell, Browning and Crawford (2003, 2006), who originally focused on
the GARP condition for the unitary model. Essentially, the approach of Blundell, Browning
and Crawford uses estimated Engel curves for given price regimes to construct �virtual�quantity
bundles that maximize the power of the nonparametric (testing and recovery) tools. When
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adapting this approach to the methodology presented in this paper, one can focus on Engel
curves for assignable quantities as well as on Engel curves for the aggregate household quanti-
ties. In our opinion, such extensions can be particularly valuable in view of real-life empirical
applications.

Appendix: proofs

Proof of Proposition 1

Varian (1982) has proven equivalence between conditions (ii) and (iii), so we can restrict to
proving equivalence between conditions (i) and (iii). This proof extends the proof of Proposition
1 of Cherchye, De Rock and Vermeulen (2007), who consider two-member households and do
not account for the possibility of assignable quantity information.

1. Necessity. Under condition (i), we have that each bqt = �q1t ; :::; qMt ;Qt

�
solves the problem

max
(q1;:::;qM ;Q)

MX
m=1

�mt U
m (qm;Q) s.t. p0t[

XM

m=1
qm + (

XM

m=1
Qm +Qh)] � p0tqt and qm � qAmt :

Given concavity, the functions Um are subdi¤erentiable, which carries over to their weighted

sum
MP
m=1

�mt U
m:8 An optimal solution to the above maximization problem must therefore satisfy

(for �t the Lagrange multiplier associated with the budget constraint)

�mt U
m
qmt
� �tpt and

MX
m=1

�mt U
m
Qc
t
� �tpt;

for Umqmt a subgradient of the function U
m de�ned for the vector qm and evaluated at qmt , and

UmQc
t
a subgradient de�ned for Qc and evaluated at Qc

t (c = 1; :::;M; h) : Letting P
m;c
t =

Um
Qct

�t
and

�mt =
�t
�mt
thus gives for each m

Umqmt � �
m
t pt and U

m
Qc
t
� �mt P

m;c
t : (6.1)

Next, concavity of the functions Um implies for each m

Um (bqs)� Um (bqt) � Umqmt (qms � qmt ) + X
c=1;:::;M;h

UmQc
t
(Qc

s �Qc
t) : (6.2)

Substituting (6.1) in (6.2) and setting Umk = U
m (bqk) (k = s; t) obtains condition (iii) of the

proposition.

2. Su¢ ciency. Under condition (iii), for any bq = �
q1; :::; qM ;Q

�
such that p0t[

PM
m=1 q

m +

8To be precise, �Um (m = 1; :::;M) is convex and therefore subdi¤erentiable. This, of course, does not a¤ect
our argument.
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(
PM

m=1Q
m +Qh)] � p0tqt and qm � qAmt we can de�ne for all m

Um (bq) = min
t2f1;:::;Tg

�
Umt + �

m
t (bpmt )0 (bq� bqt)� : (6.3)

Varian (1982) proves that Um (bqt) = Umt . Next, given �mj 2 <++, we have that
MX
m=1

�mt U
m (bq) � MX

m=1

�mt
�
Umt + �

m
t (bpmt )0 (bq� bqt)� :

Without losing generality, we concentrate on �mt = (1=�
m
t ), which obtains

MX
m=1

�mt U
m (bq) � MX

m=1

�mt U
m
t + (pt)

0 (q� qt) ;

for q = [
PM

m=1 q
m + (

PM
m=1Q

m +Qh)]:
Since p0tq � p0tqt, we thus have

MX
m=1

�mt U
m (bq) � MX

m=1

�mt U
m
t =

MX
m=1

�mt U
m
t (bqt) ;

which proves that bqt maximizes MP
m=1

�mt U
m (qm;Q) subject to p0t[

PM
m=1 q

m+(
PM

m=1Q
m+Qh)] �

p0tqt and q
m � qAmt . We conclude that the functions Um in (6.3) provide a collective rationaliza-

tion of the set SA. These functions have the properties listed in condition (i) of the proposition
(compare with Varian, 1982).

Proof of Proposition 2

1. Necessity. Suppose there exist feasible personalized prices
�bp1t ; :::; bpMt � such that for each

memberm = 1; :::; M the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP. Then the corresponding

speci�cation of Pm;h
t , bymt and xmst 2 f0; 1g satis�es rules (PP-i)-(PP-v). First, rules (PP-i) and

(PP-ii) are satis�ed because the feasible personalized prices and income shares are consistent
with De�nitions 3 and 5. Next, to see consistency with rules (PP-iii)-(PP-v), consider any se-
quence (u; v; :::; z) such that

�
Pm;h
s

�0
qs �

�
Pm;h
s

�0
qu,

�
Pm;h
u

�0
qu �

�
Pm;h
u

�0
qv, ...,

�
Pm;h
z

�0
qz ��

Pm;h
z

�0
qt. (Trivially, another sequence does not impose restrictions on xmst .) Rule (PP-iii) then

implies xmsu = x
m
uv = ::: = x

m
zt = 1, and rule (PP-iv) consequently obtains x

m
st = 1. Rule (PP-v)

is then automatically satis�ed because the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP, and

thus
�
Pm;h
t

�0
qt �

�
Pm;h
t

�0
qs whenever

�
Pm;h
s

�0
qs �

�
Pm;h
s

�0
qu,

�
Pm;h
u

�0
qu �

�
Pm;h
u

�0
qv, ...,�

Pm;h
z

�0
qz �

�
Pm;h
z

�0
qt (which corresponds to bqs Rm bqt).

2. Su¢ ciency. If there exist Pm;h
t , bymt and xmst 2 f0; 1g that satisfy rules (PP-i)-(PP-v), then

there exist feasible personalized prices
�bp1t ; :::; bpMt � such that for each member m = 1; :::; M

34



the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP. We prove ex absurdo. Suppose that for any

speci�cation of
�bp1t ; :::; bpMt � we have a sequence (u; v; :::; z) such that bqs Rm0 bqu; bqu Rm0 bqv; :::;bqz Rm0 bqt and �Pm;h

t

�0
qt >

�
Pm;h
t

�0
qs: By construction, bqs Rm0 bqu; bqu Rm0 bqv; :::; bqz Rm0 bqt

implies
�
Pm;h
s

�0
qs �

�
Pm;h
s

�0
qu,

�
Pm;h
u

�0
qu �

�
Pm;h
u

�0
qv, ...,

�
Pm;h
z

�0
qz �

�
Pm;h
z

�0
qt. In terms

of the rules (PP-i)-(PP-v), this means that there always exists a sequence (u; v; :::; z) such that,
on the one hand, xmsu = x

m
uv = ::: = x

m
zt = 1 (because of (PP-iii)) and thus x

m
zt = 1 (because of

(PP-iv)) while, on the other hand,
�
Pm;h
t

�0
qt >

�
Pm;h
t

�0
qs and thus rule (PP-v) is violated.

In other words, there does not exist Pm;h
t , bymt and xmst 2 f0; 1g that simultaneously satisfy rules

(PP-i)-(PP-v).

Proof of Proposition 3

The proof is directly analogous to that of Proposition 2.

Proof of Lemma 1

Rule (i):

1. Necessity. If for all sets bSA there exists m such that bqsRm0 bqt, then p0sqs � p0sqt. We prove
ex absurdo. Suppose for all sets bSA there exists m such that bqsRm0 bqt, and p0sqs < p0sqt: This is
impossible because p0sqs < p

0
sqt implies there exists at least one set bSA such that not bqsRm0 bqt for

all m. More speci�cally with an bSA such that (bpms ) bqs = (p0sqs) =M and (bpms )0 bqt = (p0sqt) =M .
2. Su¢ ciency. Recall that each bqt = �q1t ; :::; qMt ;Qt

�
satis�es qt =

PM
m=1 q

m
t +
�PM

m=1Q
m
t +Q

h
t

�
,

and each bpmt =
�
pm;1t ; :::; pm;Mt ;Pm

t

�
satis�es pm;mt = pt, p

m;l
t = 0 for l 6= m and Pm

t =�
Pm;1
t ; :::;Pm;M

t ;Pm;h
t

�
such that pt =

PM
m=1P

m;c
t for all c: Given this, p0sqs � p0sqt implies for

any bSA there exists m such that (bpms )0 bqs � (bpms )0 bqt and thus bqsRm0 bqt.
Rule (ii):

1. Necessity. bqsRm0 bqt for all sets bSA implies p0sqAms � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
. We prove

ex absurdo. Suppose bqsRm0 bqt for all sets bSA and p0sqAms < p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
: This is

impossible because p0sq
Am
s < p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
implies there exists at least one set bSA

with not bqsRm0 bqt: More speci�cally with an bSA such that (bpms )0 bqs = p0sq
Am
s and (bpms )0 bqt =

p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
:

2. Su¢ ciency. By construction, p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
implies (bpms )0 bqs � (bpms )0 bqt

for any bSA, and thus bqsRmo bqt for any bSA.
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Proof of Proposition 4

Given that a collective rationalization of the set SA is possible, we consider a set bSA that is
consistent with condition (ii) in Proposition 1. Using De�nition 4, this set bSA de�nes rela-
tions Rm0 and Rm (m = 1; 2): We will show that these relations (de�ned in terms of feasible
personalized quantities bqt) must satisfy the analogues of rules (i)-(vii) in Proposition 4. These
requirements carry over to the hypothetical relations Hm

0 and H
m (de�ned in terms of observed

quantities qt) speci�ed in Proposition 4: a collective rationalization of the set SA is possible
only if there exists at least one speci�cation of these hypothetical relations that is consistent
with these requirements.

Rules (i) and (ii): These rules follow directly from Lemma 1.

Rule (iii): This rule imposes transitivity.

Rule (iv): For all m 2 M we have bqtk(m) Rm bqs for k (m) � M*, which requires (bpms )0 bqs �
(bpms )0 bqtk(m) because of condition (ii) in Proposition 1. As a result we have Pm2M (bpms )0 bqs �P

m2M (bpms )0 bqtk(m) . Next, recall the de�nitional factPM
m=1 (bpms )0 bqs = p0sqs. Given this, p0sqs �

p0s

�PM*
k=1 qtk

�
necessarily implies

P
l =2M

�bpls�0 bqs � �p0s �PM*
k=1 qtk

�
�
P

m2M (bpms )0 bqtk(m)�. Thus,
because p0sqtk =

P
m2M (bpms )0 bqtk +Pl =2M

�bpls�0 bqtk for all k � M*, there must exist l =2M and
k �M* such that

�bpls�0 bqs � �bpls�0 bqtk , or bqs Rl0 bqtk .
Rule (v): For all m 2M we have bqtk(m) Rm bqs for k (m) � M*�1, which requires (bpms )0 bqs �
(bpms )0 bqtk(m) . As a result we have

P
m2M (bpms )0 bqs � P

m2M (bpms )0 bqtk(m) : Next, by construc-
tion

PM
m=1 (bpms )0 bqs = p0sqs and

P
m2M (bpms )0 bqtk(m) � p0s

�PM*�1
k=1 qtk

�
: Given this, p0sqs �

p0s

�PM*
k=1 qtk

�
necessarily implies

P
l =2M

�bpls�0 bqs � p0sqtM*. In turn, this implies that there

must exist l =2M such that
�bpls�0 bqs � �bpls�0 bqtM*

, or bqs Rl0 bqtM*
.

Rule (vi): For all m we have bqsk(m) Rm bqt for some k (m) � M*, which requires (bpmt )0 bqt �
(bpmt )0 bqsk(m) . As result we have PM

m=1 (bpmt )0 bqt � PM
m=1 (bpmt )0 bqsk(m) . Next, by construction we

have
PM

m=1 (bpmt )0 bqt = p0sqs andPM
m=1 (bpmt )0 bqsk(m) � p0t �PM*

k=1 qsk

�
: As a result, we obtain the

requirement p0tqt �
PM*

k=1 p
0
tqsk .

Rule (vii): We have bqs Rm bqt, which requires (bpmt )0 bqt � (bpmt )0 bqs. By construction, we

have (bpmt )0 bqt � p0tq
Am
t and p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
� (bpmt )0 bqs: Hence, we must have p0tqAmt �

p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
.

Proof of Proposition 5

The proof is directly analogous to that of Proposition 2 (necessity part).
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